Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel

Режим работы «Регрессия» служит для расчета параметров уравнения линейной регрессии и проверки его адекватности исследуемому процессу.

Для решения задачи регрессионного анализа в MS Excel выберите в меню Сервис командуАнализ данных и инструмент анализа «Регрессия».

В появившемся диалоговом окне задаем следующие параметры:

1. Входной интервал Y – это диапазон данных по результативному признаку. Он должен состоять из одного столбца.

2. Входной интервал X – это диапазон ячеек, содержащих значения факторов (независимых переменных). Число входных диапазонов (столбцов) должно быть не больше 16.

3. Флажок Метки, установите в том случае, если в первой строке диапазона стоит заголовок.

4. Флажок Уровень надежности активизируется, если в поле, находящееся рядом с ним введете уровень надежности, отличный от установленного по умолчанию. Используется для проверки значимости коэффициента детерминации R2 и коэффициентов регрессии.

5. Константа ноль. Данный флажок установите, если линия регрессии должна пройти через начало координат (а0 = 0).

6. Выходной интервал/ Новый рабочий лист/ Новая рабочая книга – укажите адрес верхней левой ячейки выходного диапазона.

7. Флажкив группе Остатки установите, если необходимо включить в выходной диапазон соответствующие столбцы или графики.

8. Флажок График нормальной вероятности сделайте активным, если требуется вывести на лист точечный график зависимости наблюдаемых значений Y от автоматически формируемых интервалов персентилей.

После нажатия кнопки ОК в выходном диапазоне получите отчет.


Методические указания по проведению однофакторного корреляционного и регрессионного анализа

Задача

Некоторая фирма занимается поставками различных грузов на короткие расстояния внутри города. Оценить стоимость таких услуг, зависящую от затрачиваемого на поставку времени. В качестве наиболее важного фактора, влияющего на время поставки, выбрано пройденное расстояние. Исходные данные о десяти поставках приведены в табл. 5.5.

Таблица 5.5

Данные о времени поставок и пройденном расстоянии

Расстояние, км 3,5 2,4 4,9 4,2 3,0 1,3 1,0 3,0 1,5 4,1
Время, мин

Определите характер зависимости между расстоянием и затраченным временем, используя мастер диаграмм MS Еxcel, проанализируйте применимость метода наименьших квадратов, постройте уравнение регрессии, используя МНК, проанализируйте силу регрессионной связи. Проведите регрессионный анализ, используя режим работы «Регрессия» в MS Еxcel и сравните с результатами, полученными ранее. Посчитать и построить графически меру ошибки регрессионной модели, используя табличный процессор Excel.

Решение

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Рис. 5.3. График исходных данных и предполагаемая линия регрессии

На графике постройте исходные данные по десяти поездкам.

Помимо расстояния на время поставки влияют пробки на дорогах, время суток, дорожные работы, погода, квалификация водителя, вид транспорта. Построенные точки не находятся точно на линии, что обусловлено описанными выше факторами. Но эти точки собраны вокруг прямой линии, поэтому можно предположить линейную связь между параметрами. Все исходные точки равномерно распределены вдоль предполагаемой прямой линии, что позволяет применить метод наименьших квадратов.

Вычислите суммы, необходимые для расчета коэффициентов уравнения линейной регрессии и коэффициента детерминации R2 с помощью вспомогательной таблицы (табл. 5.6).

Таблица 5.6

Расчетная таблица

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru
3,5 12,25 56,00 15,223 2,634129 5,76
2,4 5,76 31,2 12,297 1,697809 0,36
4,9 24,01 93,1 18,947 28,59041 29,16
4,2 17,64 75,60 17,085 12,14523 19,36
3,0 9,00 36,00 13,893 0,085849 2,56
1,3 1,69 14,30 9,371 17,88444 6,76
1,0 1,00 8,00 8,573 25,27073 31,36
3,0 9,00 42,00 13,893 0,085849 0,16
1,5 2,25 13,50 9,903 13,66781 21,16
4,1 16,81 65,60 16,819 10,36196 5,76
Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru 28,9 Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru 136 Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru 99,41 Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru 435,30 112,4242 122,4

Среднее значение y вычислите по формуле:

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru .

Вычислите коэффициенты линейной регрессии по формулам (5.8) и (5.9):

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Таким образом, искомая регрессионная зависимость имеет вид:

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Наклон линии регрессии Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru 2,66 минут на км. – это количество минут, приходящееся на один км расстояния. Координата точки пересечения прямой с осью Y Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru 5,913 минут – это время, которое не зависит от пройденного расстояния, а обуславливается всеми остальными возможными факторами, явно не учтенными при анализе.

Вычислите коэффициент детерминации:

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru или 91,8 %.

Проведите регрессионный анализ с использованием режима Регрессия MS Excel. Значения параметров, установленных в одноименном диалоговом окне, представлены на рис. 5.4.

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Рис. 5.4 Окно входных данных

Сгенерируются результаты по регрессионной статистике, представленные в таблице 5.7.

Таблица 5.7

Вывод итогов

Регрессионная статистика
Множественный R 0,958275757
R-квадрат 0,918292427
Нормированный R-квадрат 0,90807898
Стандартная ошибка 1,11809028
Наблюдения

Рассмотрите представленную в таблице 5.7 регрессионную статистику.

Величина R-квадрат, называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала [0; 1]. Мера определенности равная 0,91829 говорит об очень хорошей подгонке регрессионной прямой к исходным данным и совпадает с коэффициентом детерминации R2, вычисленным по формуле.

Таким образом, линейная модель объясняет 91,8 % вариации времени доставки, что означает правильность выбора фактора (расстояния). Не объясняется Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru вариации времени поездки, которые обусловлены остальными факторами, влияющими на время поставки, но не включенными в линейную модель регрессии.

Рассчитанный уровень значимости αр = 1,26E-05 < 0,05 (показатель значимость F в таблице Дисперсионный анализ подтверждает значимость R2.

Множественный R – коэффициент множественной корреляции R – выражает степень зависимости независимых переменных (X) и зависимой переменной (Y) и равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы. В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона (0,95827), который вычисляется по формуле:

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Теперь рассмотрите среднюю часть расчетов, представленную в таблице 5.8 (приведена в сокращенном варианте). Здесь даны коэффициент регрессии а1 (2,65970168) и смещение по оси ординат, то есть константа a0 (5,913462144).

Таблица 5.8

Результаты регрессионального анализа

Коэффициенты Стандартная ошибка t-статистика P-значение
Y-пересечение 5,913462144 0,884389599 6,686489927 0,00015485
Переменная X 2,65970168 0,280497238 9,482095791 1,26072E-05

Исходя из расчетов, запишите уравнение регрессии таким образом:

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Это уравнение, совпадает с уравнением, полученным при расчете по МНК вручную с точностью до ошибки округления.

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициента регрессии (коэффициента а1). Знак коэффициента регрессии положительный (+2,660), следовательно, связь также является положительной.

Далее проверьте значимость коэффициентов регрессии: а0 и а1. Сравните попарно значения столбцов Коэффициенты и Стандартная ошибка в таблице 5.8, видно, что абсолютные значения коэффициентов больше чем их стандартные ошибки. К тому же эти коэффициенты являются значимыми, о чем можно судить по значениям показателя
Р-значение в таблице 5.8, которые меньше заданного уровня значимости α = 0,05.

В таблице 5.9 представлены результаты вывода остатков. При помощи этой части отчета определите отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка – 1,89256, наименьшее – 0,05399. Для лучшей интерпретации этих данных воспользуйтесь графиком исходных данных и построенной линией регрессии, представленными на рис. 5.5. Как видно, линия регрессии хорошо «подогнана» под значения исходных данных.

Таблица 5.9

Результаты анализа остатков

Вывод остатка
Наблюдение Предсказанное Y Остатки Стандартные остатки
15,22241803 0,777581975 0,737641894
12,29674618 0,703253823 0,667131568
18,94600038 0,053999622 0,051225961
17,0842092 0,915790799 0,868751695
13,89256718 – 1,892567185 –1,795356486
9,371074328 1,628925672 1,545256778
8,573163824 –0,573163824 – 0,543723571
13,89256718 0,107432815 0,101914586
9,903014664 – 0,903014664 – 0,8566318
16,81823903 – 0,818239033 – 0,776210624

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Рис. 5.5. Исходные данные и линия регрессии

Приблизительным, но самым простым и наглядным способом проверки удовлетворительности регрессионной модели является графическое представление отклонений.

Отложите отклонения Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru по оси Y, для каждого значения Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru . Если регрессионная модель близка к реальной зависимости, то отклонения будут носить случайный характер и их сумма будет близка к нулю. В рассмотренном примере Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru .

Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru

Рис. 5.6. График отклонений

Таким образом, в результате использования регрессионного анализа в табличном процессоре MS Excel:

· построили уравнение регрессии;

· установили форму зависимости и направление связи между переменными – положительная линейная регрессия, которая выражается в равномерном росте функции;

· установили направление связи между переменными;

· оценили качество полученной регрессионной прямой;

· смогли увидеть отклонения расчетных данных от данных исходного набора.

Порядок выполнения работы

1. Ознакомьтесь с методикой проведения корреляционного и регрессионного анализа в Excel.

2. У преподавателя получите вариант индивидуального задания.

3. Парную выборку опытных данных Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru нанесите на график и визуально оцените применимость линейного уравнения регрессии.

4. Вычислите коэффициенты прямой линейной регрессий и коэффициент корреляции.

5. На график опытных точек нанесите рассчитанную линию прямой линейной регрессии. Визуально оцените близость уравнения регрессии к функциональной связи.

6. Сделайте выводы по работе и оформить отчет.

Оформление отчета

Отчет о лабораторной работе должен содержать:

1) постановку задачи;

2) результаты вычислений индивидуальных заданий;

3) анализ полученных результатов табличном процессоре MS Excel.

Варианты индивидуальных заданий

Постройте регрессионную модель (линейную) для исходных данных, приведенных в таблице 5.10.

Таблица 5.10

Индивидуальные задания

Номера контрольных задач
i
  Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru
2,62 0,90 15,57 75,53 – 44,2 5,85 45,11 43,20 93,53 30,76
2,44 0,71 15,41 75,38 – 44,6 5,70 44,90 43,03 93,37 30,59
2,25 0,56 15,22 75,20 – 44,7 5,52 44,75 42,86 93,16 30,43
2,06 0,38 15,03 74,04 – 44,8 5,36 44,56 42,72 92,99 30,29
1,89 0,21 14,85 74,87 – 45,0 5,19 44,38 42,54 92,81 30,10
1,71 0,06 14,68 74,71 – 45,2 5,03 44,20 42,38 92,63 29,94
1,53 – 0,11 14,50 74,53 – 45,4 4,86 44,02 42,21 92,45 29,77
1,40 – 0,13 14,36 74,52 – 45,5 4,84 43,89 42,19 92,32 29,75
1,26 – 0,14 14,23 74,51 – 45,6 4,83 43,75 42,18 92,18 29,74
1,13 – 0,16 14,11 74,48 – 45,8 4,81 43,62 42,16 92,05 29,72
1,00 – 0,18 13,97 74,47 – 45,9 4,79 43,49 42,14 91,92 29,70
0,86 – 0,19 13,83 74,46 – 46,0 4,78 43,35 42,13 91,78 29,69
0,73 – 0,21 13,70 74,44 – 46,2 4,76 43,22 42,11 91,65 29,67
0,62 – 0,15 13,59 74,50 – 46,3 4,82 43,11 42,17 91,54 29,73
Номера контрольных задач
i
  Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru
– 17,9 – 69,9 173,2 80,9 14,6 11,8 27,2 7,6 – 10,2 51,5
– 18,0 – 70,0 179,5 81,8 14,4 11,6 20,3 7,2 – 10,4 51,4
– 18,2 – 70,1 185,8 82,6 14,3 11,4 13,4 6,8 – 10,6 51,2
– 18,5 – 70,3 176,1 87,4 14,1 11,2 16,5 13,4 – 10,9 51,0
– 18,7 – 70,5 179,0 93,9 13,9 11,0 19,7 20,1 – 11,1 50,9
– 18,9 – 70,6 180,0 86,7 13,7 10,9 20,8 12,3 – 11,3 50,7
– 19,0 – 70,8 181,1 79,5 13,5 10,7 21,9 4,5 – 11,4 50,5
– 19,2 – 70,9 180,0 79,8 13,4 10,6 20,2 4,6 – 11,6 50,4
– 19,3 – 71,0 178,9 80,1 13,3 10,5 18,7 4,7 – 11,7 50,3
– 19,4 – 71,1 181,0 86,9 13,1 10,4 20,9 12,5 – 11,8 50,1
– 19,6 – 71,2 183,2 93,8 13,0 10,2 23,0 20,2 – 12,0 49,9
– 19,7 – 71,4 181,0 89,3 12,9 10,0 21,1 14,9 – 12,1 49,7
– 19,8 – 71,4 178,9 84,8 12,7 9,9 19,0 9,9 – 12,2 49,5
– 20,0 – 71,5 183,5 87,5 12,6 9,7 23,9 12,0 – 12,4 49,4
                                                 

Окончание табл. 5.10

  Номера контрольных задач
i
  Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru Справочная информацця по технологии работы с режимом «Регрессия» надстройки Пакет анализа MS Excel - student2.ru
12,9 62,9 17,2 80,7 – 14,6 11,9 26,2 – 7,6 10,2 61,5
13,0 63,0 17,5 81,6 – 14,4 11,7 19,3 – 7,2 10,4 61,4
13,2 63,1 18,8 82,4 – 14,3 11,5 12,4 – 6,8 10,6 61,2
13,5 63,3 17,1 87,2 – 14,1 11,3 15,5 – 13,4 10,9 61,0
13,7 63,5 17,0 93,7 – 13,9 11,1 18,7 – 20,1 11,1 60,9
13,9 63,6 18,0 86,5 – 13,7 10,9 19,8 – 12,3 11,3 60,7
14,0 63,8 18,1 79,3 – 13,5 10,8 20,9 – 4,5 11,4 60,5
14,2 63,9 18,0 79,6 – 13,4 10,7 19,2 – 4,6 11,6 60,4
14,3 64,0 17,9 80,0 – 13,3 10,5 17,7 – 4,7 11,7 60,3
14,4 64,1 18,0 86,7 – 13,1 10,4 19,9 – 12,5 11,8 60,1
14,6 64,2 18,2 93,6 – 13,0 10,2 22,0 – 20,2 12,0 59,9
14,7 64,4 18,0 89,1 – 12,9 10,0 20,1 – 14,9 12,1 59,7
14,8 64,4 17,9 84,6 – 12,7 9,9 18,0 – 9,9 12,2 59,5
15,0 64,5 18,5 87,3 – 12,6 9,7 22,9 – 12,0 12,4 59,4

Контрольные вопросы

1. Какие основные задачи решают с помощью корреляционного и регрессионного анализа?

2. Сформулируйте принцип Лежандра.

3. Какими показателями измеряется теснота корреляционной связи?

4. В чем отличие стохастической связи от функциональной?

5. В чем состоит значение уравнения регрессии? Что характеризуют коэффициенты регрессии?

6. Для чего нужен коэффициент корреляции? В каких пределах он изменяется?

7. Как осуществляется проверка значимости коэффициентов регрессии?

8. Как проверить адекватность уравнения в целом?

9. В каких случаях применяется модель множественной регрессии?

10. Как проводится корреляционный и регрессионный анализ в MS Excel?

Наши рекомендации