Операции над векторами, заданными в координатной форме
Пусть даны два вектора и , заданные своими проекциями:
или
или
Укажем действия над этими векторами.
1.Сложение:
или, что то же
,
т.е. при сложении двух векторов одноимённые координаты складываются.
2.Вычитание:
или, что то же
,
т.е. при вычитании двух векторов одноимённые координаты вычитаются.
3.Умножение вектора на число:
или, что то же
,
т.е. при умножении вектора на число все координаты умножаются на это число.
Пример 7. Даны два вектора:
.
Найти .
Решение:
.
Пример 8. Даны четыре вектора:
, , , .
Найти координаты векторов и .
Решение.
.
.
n- мерные векторы и операции над ними
При изучении многих вопросов, в частности, экономических, оказалось удобным обобщить рассмотренные приёмы установления соответствия между числами и точками двумерного и трёхмерного пространства и рассматривать последовательности n действительных чисел как "точки" некоторого абстрактного "n-мерного пространства", а сами числа - как "координаты" этих точек. За составляющие n-мерного вектора можно принимать такие данные, как урожайность различных культур, объёмы продаж товаров, технические коэффициенты, номенклатура товаров на складах и т.д.
n-мерным вектором называется упорядоченный набор из n действительных чисел, записываемых в виде
,
где - i – й элемент (или i – я координата) вектора x.
Возможна и другая запись вектора – в виде столбца координат:
Размерность вектора определяется числом его координат и является его отличительной характеристикой. Например, (2; 5) – двухмерный вектор, (2; -3; 0) – трёхмерный, (1; 3; -2; -4; 7) – пятимерный,
-
n – мерный вектор.
Нулевым вектором называется вектор, все координаты которого равны нулю:
0 = (0; 0; …; 0).
Введём операции над n-мерными векторами.
Произведением вектора
на действительное число называется вектор
т.е. при умножении вектора на число каждая его координата умножается на это число.
Зная вектор
можно получить противоположный вектор
Суммой векторов
и
называется вектор
,
т.е. при сложении векторов одной и той же размерности их соответствующие координаты почленно складываются.
Если в плане продаж сети торговых предприятий продажи товаров определить как положительные уровни товаров, а затраты на продажи – как отрицательные, то получим вектор затрат-продаж
,
где
-продажи (затраты) k – м предприятием товара i, а k = 1, 2, 3,…, m .
Суммарный вектор затрат-продаж y определяется суммированием векторов затрат-продаж всех m предприятий сети:
Сумма противоположных векторов даёт нулевой вектор:
При вычитании двух векторов одной и той же размерности их соответствующие координаты почленно вычитаются:
Операции над n-мерными векторами удовлетворяют следующим свойствам.
Свойство 1.
Свойство 2.
Свойство 3.
Свойство 4.
Свойство 5.
Свойство 6.