Тема 9. простейшее движение твердого тела.

СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ

Число степеней свободы.

Числом степеней свободы твердого тела называют число независимых параметров, определяющих положение тела относительно рассматриваемой системы отсчета.

Движение твердого тела во многом зависит от числа его степеней свободы; тело с одним и тем же числом степеней свободы может совершать различные движения, не похожие друг на друга. Свободное твердое тело в общем случае имеет шесть степеней свободы. В качестве независимых параметров можно взять любые шесть координат точек или шесть других независимых параметров, которые являются функциями координат трех или большего количества точек тела. У свободной точки три степени свободы и соответственно три независимых параметра, например ее координаты х, у, z. Точка, которая движется по неподвижной поверхности, имеет две степени свободы. При движении точки по неподвижной кривой точка имеет одну степень свободы.

Справедлива теорема: при любом движении твердого тела проекции скоростей точек на прямую, соединяющую эти точки, равны (рис. 13).

тема 9. простейшее движение твердого тела. - student2.ru

Для доказательства теоремы используем зависимость радиусов-векторов точек А и В:

rB-rA=АВ (АВ=l)

Возведем обе части в квадрат. Имеем:

(rB-rA)(rB-rA)=l2 (l2=l2)

но l=const для твердого тела. Дифференцируя по времени это выражение, справедливое для любого момента времени, получим:

тема 9. простейшее движение твердого тела. - student2.ru

Заменив в этом равенстве:

тема 9. простейшее движение твердого тела. - student2.ru

Получим:

тема 9. простейшее движение твердого тела. - student2.ru

Раскрывая скалярные произведения векторов, и сокращая на l ,имеем: vBcosß= vAcosα

Теорема доказана. Очевидно, все точки тела, расположенные на прямой АВ, имеют одинаковые проекции скоростей на эту прямую.

Имеется два простейших вида движения твердого тела, комбинированием которых можно получать другие, более слож­ные его движения. Такими движениями твердого тела являются поступательное движение и вращение вокруг неподвижной оси.

9.2. Поступательное движение твердого тела

Поступательным движением твердого тела называют такое его движение, при котором любая прямая, жестко скрепленная с телом, остается параллельной своему первоначальному положению в каждый момент времени. Очевидно, достаточно, чтобы это выполнялось только для двух непараллельных прямых, скрепленных с телом. Поступательно движутся педали у велосипеда относительно его рамы во время движения, поршни в цилиндрах двигателя внутреннего сгорания относительно цилиндров, кабины колеса обозрения относительно' Земли в парках. Траектории точек у поступательно движущегося твердого тела могут быть не только прямыми, но и любыми кривыми, в том числе окружностями. Свойства поступательного движения характеризует следу­ющая теорема: при поступательном движении твердого тела траектории, скорости и ускорения всех точек тела одинаковы. Если выбрать две точки А и В твердого тела, то радиусы-векторы этих точек удовлетворяют условию (рис. 14)

тема 9. простейшее движение твердого тела. - student2.ru

rB = rA + АВ. (1)

Для любого твердого тела вектор АВ является постоянным по модулю, а при поступательном движении он не изменяется и по направлению, т.е. траектории точек одинаковы. Если продифференцировать по времени (l), справедливое для любого момента времени, то получим :

тема 9. простейшее движение твердого тела. - student2.ru

В этом соотношении drB/dt = vB, drA/dt = vA. Кроме того, для АВ, постоянного по модулю и направлению вектора, d/dt(АВ) =0. Таким образом, для любого момента времени имеем vB=vA (2)

Дифференцируя по времени (2) и учитывая, что dvB/dt = aB, dvA/dt = aA, получим

аB = аА (3)

Теорема о поступательном движении твердого тела полностью доказана.

Движение твердого тела, для которого векторы скоростей точек равны только в один момент времени, а не все время, называется мгновенным поступательным движением. Для мгно­венного поступательного движения ускорения точек не являются одинаковыми.

Поступательное движение твердого тела полностью характе­ризуется движением одной точки тела. Для задания этого движения достаточно знать координаты какой-либо точки тела как функции времени, т. е. х= f1(t), y= f2(t) z= f3(t) (4)

На движение отдельной точки тела при поступательном движении никаких ограничений в общем случае не накла­дывается. Следовательно, твердое тело, совершающее поступа­тельное движение, имеет три степени свободы и уравнения (4) считаются уравнениями поступательного движения твердого тела. Для изучения поступательного движения твердого тела достаточно использовать кинематику одной точки.

Наши рекомендации