Примеры решения систем линейных алгебраических уравнений матричным методом
Матричный метод решения систем линейных алгебраических уравнений - вывод формулы.
Пусть для матрицы А порядка n на n существует обратная матрица . Умножим обе части матричного уравнения слева на (порядки матриц A ⋅ X и Впозволяют произвести такую операцию, смотрите статью операции над матрицами, свойства операций). Имеем . Так как для операции умножения матриц подходящих порядков характерно свойство ассоциативности, то последнее равенство можно переписать как , а по определению обратной матрицы (E – единичная матрица порядка n на n), поэтому
Таким образом, решение системы линейных алгебраических уравнений матричным методом определяется по формуле . Другими словами, решение СЛАУ находится с помощью обратной матрицы .
Мы знаем, что квадратная матрица А порядка n на n имеет обратную матрицу только тогда, когда ее определитель не равен нулю. Следовательно, СИСТЕМУ nЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С n НЕИЗВЕСТНЫМИ МОЖНО РЕШАТЬ МАТРИЧНЫМ МЕТОДОМ ТОЛЬКО ТОГДА, КОГДА ОПРЕДЕЛИТЕЛЬ ОСНОВНОЙ МАТРИЦЫ СИСТЕМЫ ОТЛИЧЕН ОТ НУЛЯ.
К началу страницы
Примеры решения систем линейных алгебраических уравнений матричным методом.
Рассмотрим матричный метод на примерах. В некоторых примерах мы не будем подробно описывать процесс вычисления определителей матриц, при необходимости обращайтесь к статье вычисление определителя матрицы.
Пример.
С помощью обратной матрицы найдите решение системы линейных уравнений .
Решение.
В матричной форме исходная система запишется как , где . Вычислим определитель основной матрицы и убедимся, что он отличен от нуля. В противном случае мы не сможем решить систему матричным методом. Имеем , следовательно, для матрицы А может быть найдена обратная матрица . Таким образом, если мы отыщем обратную матрицу, то искомое решение СЛАУ определим как . Итак, задача свелась к построению обратной матрицы . Найдем ее.
Мы знаем, что для матрицы обратная матрица может быть найдена как , где - алгебраические дополнения элементов .
В нашем случае
Тогда
Выполним проверку полученного решения , подставив его в матричную форму исходной системы уравнений . Это равенство должно обратиться в тождество, в противном случае где-то была допущена ошибка.
Следовательно, решение найдено верно.
Ответ:
или в другой записи .
Пример.
Решите СЛАУ матричным методом.
Решение.
Первое уравнение системы не содержит неизвестной переменной x2, второе –x1, третье – x3. То есть, коэффициенты перед этими неизвестными переменными равны нулю. Перепишем систему уравнений как . От такого вида проще перейти к матричной форме записи СЛАУ . Убедимся в том, что эта система уравнений может быть решена с помощью обратной матрицы. Другими словами, покажем что :
Построим обратную матрицу с помощью матрицы из алгебраических дополнений:
тогда,
Осталось найти решение СЛАУ:
Рекомендуем выполнить проверку.
Ответ:
.
При переходе от обычного вида системы линейных алгебраических уравнений к ее матричной форме следует быть внимательным с порядком следования неизвестных переменных в уравнениях системы. К примеру, СЛАУ НЕЛЬЗЯ записать как . Нужно сначала упорядочить все неизвестные переменные во всех уравнениях системы, а потом переходить к матричной записи:
или
Также будьте внимательны с обозначением неизвестных переменных, вместоx1, x2, …, xn могут быть любые другие буквы. Например, СЛАУ в матричной форме запишется как .
Разберем пример.
Пример.
Найдите решение системы линейных алгебраических уравнений с помощью обратной матрицы.
Решение.
Упорядочив неизвестные переменные в уравнениях системы, запишем ее в матичной форме . Вычислим определитель основной матрицы:
Он отличен от нуля, поэтому решение системы уравнений может быть найдено с помощью обратной матрицы как . Найдем обратную матрицу по формуле :
Получим искомое решение:
Ответ:
x = 0, y = -2, z = 3.
Пример.
Найдите решение системы линейных алгебраических уравнений матричным методом.
Решение.
Определитель основной матрицы системы равен нулю
поэтому, мы не можем применить матричный метод.
Нахождение решения подобных систем описано в разделе решение систем линейных алгебраических уравнений.
Пример.
Решите СЛАУ матричным методом, - некоторое действительное число.
Решение.
Система уравнений в матричной форме имеет вид . Вычислим определитель основной матрицы системы и убедимся в том, что он отличен от нуля:
Квадратных трехчлен не обращается в ноль ни при каких действительных значениях , так как его дискриминант отрицателен , поэтому определитель основной матрицы системы не равен нулю ни при каких действительных . По матричному методу имеем . Построим обратную матрицу по формуле :
Тогда
Рекомендуем выполнить проверку полученного результата.
Ответ:
.К началу страницы
Подведем итог.
Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля. Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.