Классификация автоматических систем. Примеры по классификации

СПИСОК ВОПРОСОВ

1.Классификация автоматических систем. Примеры по классификации.

2.Методы анализа линейных систем радиоавтоматики.

3.Характеристики линейных систем радиоавтоматики, связь между ними.

4.Структурные схемы, отличие от функциональных. Примеры.

5.Инерционные и интегрирующие звенья, их характеристики.

6.Дифференцирующие и упругие звенья, их характеристики.

7.Форсирующее и колебательное звенья, их характеристики.

8.Передаточные функции разомкнутых и замкнутых систем, передаточные функции ошибки от регулирующего и возмущающего воздействий.

9.Устойчивость линейных САУ. Теорема Ляпунова. Критерий Гурвица.

10.Частотный критерий Найквиста. Примеры.

11.Частотный критерий Михайлова. Примеры.

12.Качество регулирования в установившемся и вынужденном режимах. Примеры.

13.Связь между структурой системы, входным воздействием и ошибкой регулирования. Примеры.

14.Качество переходных режимов, методы определения параметров качества.

15.Аналитический способ определения переходной характеристики.

16.Определения параметров переходного режима с помощью ЛАЧХ.

17.Классификация нелинейных систем, примеры.

18.Методы анализа нелинейных систем.

19.Система термостатирования. Структурная схема, дифф. уравнения.

20.Фазовый метод анализа нелинейных систем. Правила вычерчивания фазовых траекторий.

21.Фазовый портрет системы термостатирования.

22.Гармоническая линеаризация.

23.Метод Гольдфарба, примеры.

24.Связь между диаграммой Гольдфарба и фазовым портретом системы. Примеры.

25.Основные характеристики случайных процессов.

26.Теорема Винера - Хинчина.

27.Случайные процессы в линейных системах радиоавтоматики.

28.Ошибки регулирования в системах радиоавтоматики при случайном управляющем воздействии.

29.Ошибки регулирования в системах радиоавтоматики при одновременном воздействии случайного управляющего сигнала и помехи.

Вопрос 1

Классификация автоматических систем. Примеры по классификации

Классификация автоматических систем

1. По качеству регулирования

а) системы с регулированием по возмущению (без обратной связи)

Система автоматического регулирования усиления:

1 каскад
2 каскад
3 каскад
Амплитудный детектор
>
Uвых
Uвых
Uвх
Без АРУ

Достоинства этой системы в простоте и отсутствии склонности к самовозбуждению. Недостаток: низкое качество регулирования по сравнению с системами с ОС.

Регулирующее воздействие вырабатывается на основе анализа внешних воздействий, действующих на систему. Анализ состояния объекта не производится.

б) система с регулированием по отклонению (с ОС)

1 каскад
2 каскад
3 каскад
Амплитудный детектор
>
Uвых
Uрег = Uвых
Uвых
Uвх

Достоинство – высокое качество регулирования. Недостаток: склонность к самовозбуждению.

Регулирующее воздействие вырабатывается на основе информации о действительном состоянии объекта регулирования в сравнении с требуемым.

2. а) системы стабилизации

Необходимы для поддержания параметров регулируемого объекта на постоянном уровне.

Упрощенная схема системы стабилизации скорости ленты в аудио (видео) магнитофоне:

двигатель
>
Частотный детектор
>
Головка синхронизации
f эталонная (из сети переменного напряжения)

(замкнутая система стабилизации через ленту).

б) следящая система

Это система, которая изменяет состояние объекта регулирования по какому-то заданному закону (определяется внешним управляющим сигналом).

Такая система есть в каждом дисководе.

э/м двигатель
>
лазер
датчик
ξ – разностное напряжение
дорожка

в) система программного регулирования

Когда состояние объекта регулирования изменяется про закону, заданному программой.

Такая система поворачивает спутниковую антенну.

программа
часы
двигатель
>
-
ξ
редуктор
датчик

3. а) Статические системы

Ошибка регулирования является источником формирования регулирующего воздействия, поэтому ошибка всегда есть.

Система статической автоматической подстройки частоты:

Смеситель
УПЧ
Частотный дискриминатор
fс
УПТ
Гетеродин
fпр
Uд
Uупр
fг

УПЧ
f
fпр1
Uд
fпр
fпр1
ЧД

Велика опасность самовозбуждения.

б) астатическая система

УРЧ
Смеситель
УПЧ
УПТ
Двигатель постоянного тока
Гетеродин

Вместо варикапа используется механически перестраиваемый конденсатор переменной ёмкости.

Двигатель перестанет работать, когда на УПТ U=0, следовательно, происходит точная настройка на fпр1.

Астатическая система включает в себя интегрирующие звенья.

Вопрос 2

Методы анализа линейных систем радиоавтоматики

Линейная система – система, которая описывается линейными дифференциальными уравнениями. Стационарная линейная система описывается линейным дифференциальным уравнением с постоянными коэффициентами (не меняющиеся во времени частоты, уровни и т.д.).

Следящая система
x
y

Y копирует x. ДУ такой системы:

Классификация автоматических систем. Примеры по классификации - student2.ru .

Все методы анализа линейной системы основаны на методе суперпозиции:

Классификация автоматических систем. Примеры по классификации - student2.ru .

A
x
y

x – состояние регулируемого объекта,

y – фактическое состояние (датчик),

A – оператор, функция (K(jω), K(p), g(t), h(t)).

Метод Фурье:

Классификация автоматических систем. Примеры по классификации - student2.ru

Изображение по Лапласу:

X(p) – изображение (спектр комплексной частоты Лапласа).

Классификация автоматических систем. Примеры по классификации - student2.ru

K(p) – частотная характеристика системы в области комплексной частоты (передаточная функция).

Классификация автоматических систем. Примеры по классификации - student2.ru

Дюамель:

Δt→0
t
y(t)
t
x(t)

Импульсная характеристика:

t
g(t)
t
y(t)
t
h(t)

Классификация автоматических систем. Примеры по классификации - student2.ru

Вопрос 3

Характеристики линейных систем радиоавтоматики, связь между ними

Основные характеристики ЛС: K(jω), K(p), g(t1), h(t1).

1. Связь между передаточной функцией и комплексным коэффициентом передачи:

Классификация автоматических систем. Примеры по классификации - student2.ru

2. Связь между временными и частотными характеристиками K(jω) и g(t) – прямое и обратное преобразование Фурье:

Классификация автоматических систем. Примеры по классификации - student2.ru

Дифференциальное уравнение:

Классификация автоматических систем. Примеры по классификации - student2.ru

Передаточная функция системы есть отношение полиномов (коэффициенты в числителе - из правой части ДУ, в знаменателе – из левой части ДУ).

К(p)
X(p)
Y(p)

Классификация автоматических систем. Примеры по классификации - student2.ru

АЧХ=геом сумма от K(jw) ФЧХ=arctg(Im/Re) Годограф-Кривая, нарисованная концом вектора компл коэф-та передачи при изменении частоты от 0 до 00

Логарифмическая АЧХ

Вопрос 4

Структурные схемы, отличие от функциональных. Примеры

Структурные схемы – набор прямоугольников, соединённых стрелками, показывающих направление распространения информации. В прямоугольниках указываются соответствующие передаточные функции.

Структурные звенья 1го порядка:

Классификация автоматических систем. Примеры по классификации - student2.ru .

1. Безынерционное (пропорциональное) звено

Классификация автоматических систем. Примеры по классификации - student2.ru

K(ω)
ω

2. Инерционное

Классификация автоматических систем. Примеры по классификации - student2.ru

K – коэффициент усиления на постоянном токе, T – постоянная времени инерционного звена.

K(ω)
ω
Im
Re
K

3. Идеальное интегрирующее

Классификация автоматических систем. Примеры по классификации - student2.ru

K(ω)
ω
Im
Re

4. Дифференцирующее

а) идеальное дифференцирующее звено

Классификация автоматических систем. Примеры по классификации - student2.ru

K(ω)
ω
Im
Re

5. Реальное дифференцирующее звено

Классификация автоматических систем. Примеры по классификации - student2.ru

K(ω)
ω
Im
Re

5. Упругие звенья

Классификация автоматических систем. Примеры по классификации - student2.ru

а) T1 > T2 – упругое дифференцирующее

K(ω)
ω
Im
Re

б) T1 < T2 – упругое интегрирующее

K(ω)
ω
Im
Re

6. Форсирующее

Классификация автоматических систем. Примеры по классификации - student2.ru

K(ω)
ω
K
Im
Re
K

7. Колебательное

Классификация автоматических систем. Примеры по классификации - student2.ru

K(ω)
ω
K
1/T
Im
Re

В структурных схемах используется операторный метод. В качестве описания используется передаточная функция каждого элемента. Функциональные схемы позволяют рассмотреть схему на уровне принципа работы и связей между основными элементами.

Вопрос 5

Инерционные и интегрирующие звенья, их характеристики

Инерционные звенья

Классификация автоматических систем. Примеры по классификации - student2.ru .

K – коэффициент усиления на постоянном токе.

T – постоянная времени инерционного звена.

Классификация автоматических систем. Примеры по классификации - student2.ru

A(ω)
ω
φ(ω)
ω

φ(ω) = 0 - arctg(ωt) = - arctg(ωt).

Im
Re
K
L(ω), дБ
ω
3 дБ
ωр

Классификация автоматических систем. Примеры по классификации - student2.ru .

Интегрирующие звенья:

Классификация автоматических систем. Примеры по классификации - student2.ru

Классификация автоматических систем. Примеры по классификации - student2.ru

A(ω)
ω
φ(ω)
ω
-π/2

Im
Re
L(ω), дБ
ω
ωр

Подадим на вход ступеньку, получаем

t
h

Сравним с инерционным звеном.

R
C
R
C
h(t) = 1-e-1/T
- интегрирующий операционный усилитель

К интегрирующему операционному усилителю предъявляются требования:

K→ ∞,

Rвх → ∞,

Rвых→ ∞.

Инерционность появляется сама из-за наличия паразитных параметров.

Вопрос 6

Дифференцирующие и упругие звенья, их характеристики

1. Дифференцирующие звенья

K(jω): A(ω) – АЧХ, φ(ω) – ФЧХ, АФЧХ – годограф, ЛАЧХ.

а) идеальное дифференцирующее звено

K(p) = pT, y(t)=Tdx/dt.

A
ω
φ
ω
π/2
Im
Re
A
lg ω
1/T
-20дБ/дек

L(ω) = 20lg(ωT).

Подадим единичный импульс.

K(p)
1(t)
1/p
h(t)
K(p)/p

Классификация автоматических систем. Примеры по классификации - student2.ru .

Импульсная характеристика имеет вид:

Im
Re

Операционный дифференциальный усилитель:

R
C
- дифференцирующий операционный усилитель

Требования к ОУ: K = -∞, Rвх → ∞, Rвых → 0

Область применения: коррекция автоматических систем.

б) реальное дифференцирующее звено

Классификация автоматических систем. Примеры по классификации - student2.ru .

Классификация автоматических систем. Примеры по классификации - student2.ru

K(ω)
ω
φ(ω)
ω
π/2

Im
Re
L(ω)
ω
1/T

Классификация автоматических систем. Примеры по классификации - student2.ru .

Область применения: коррекция автоматических систем.

Дифференцирующие звенья поглощают астатизм и являются «противоположными» интегрирующим.

Самая простая реализация вынужденной схемы:

R
C

Переходная характеристика:

Классификация автоматических систем. Примеры по классификации - student2.ru

h(t)
t
T1
T2
T3
T1>T2>T3

Чем больше постоянная времени, тем выше качество дифференцирования.

2. Упругие звенья

Передаточная характеристика:

Классификация автоматических систем. Примеры по классификации - student2.ru

Возможны два варианта:

а) T1 > T2 (звено упругое дифференцирующее);

б) T2 > T1 (звено упругое интегрирующее).

Классификация автоматических систем. Примеры по классификации - student2.ru

T1/T2
T1/T2
а)
б)
K
ω
A(ω)
а)
б)
ω
φ(ω)
Классификация автоматических систем. Примеры по классификации - student2.ru

а)
б)
Re
Im
T1/T2
T1/T2

а)

а)

R
C
R
б)
R
R
C

Область применения: коррекция автоматических систем с целью снятия самовозбуждения.

Переходные характеристики:

а)

h(t)
t
б)
h(t)
t
К

Вопрос 7

Форсирующее и колебательное звенья, их характеристики

Форсирующее звено является антиинерционным звеном.

Классификация автоматических систем. Примеры по классификации - student2.ru .

Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru

Классификация автоматических систем. Примеры по классификации - student2.ru ,

T1 = T2: K(p) = K2.

Физически сделать трудно.

Дифференциальное уравнение:

Классификация автоматических систем. Примеры по классификации - student2.ru

A(ω)
K
ω
φ(ω)
π/2
ω
Im
K
Re
L(ω)
1/T
ω
-20 дБ/дек

Классификация автоматических систем. Примеры по классификации - student2.ru .

h(t)
t
K
R2
C
R1
R2/R1

Область применения: борьба с инерционностью.

Колебательное звено:

Классификация автоматических систем. Примеры по классификации - student2.ru .

ξ – коэффициент затухания (соизмерим с 1).

Классификация автоматических систем. Примеры по классификации - student2.ru

Классификация автоматических систем. Примеры по классификации - student2.ru , Классификация автоматических систем. Примеры по классификации - student2.ru .

1/T
ω
A
ω
φ
-90°
-180°
Re
Im
K
ξ=0.9
t
ξ=0.7

Чем меньше ξ, тем дольше происходят колебания.

R
C
L

Часто встречается в автоматических системах.

Вопрос 8

Передаточные функции разомкнутых и замкнутых систем, передаточные функции ошибки от регулирующего и возмущающего воздействий

Передаточная функция (ПФ) разомкнутых систем:

Рассмотрим следящую систему.

K1(p)
K2(p)
K3(p)
ξ
y

Классификация автоматических систем. Примеры по классификации - student2.ru

K1(p)
K2(p)
K3(p)
z
y
K4(p)
ξ

Классификация автоматических систем. Примеры по классификации - student2.ru - передаточная функция разомкнутой системы. Сигнал z должен копировать сигнал x.

ПФ замкнутой системы

K(p)
ξ
y
x

K(p) включает в себя все 3 звена.

Классификация автоматических систем. Примеры по классификации - student2.ru - ПФ замкнутой системы.

Классификация автоматических систем. Примеры по классификации - student2.ru .

Из-за обратной связи

Классификация автоматических систем. Примеры по классификации - student2.ru .

Не следящая система

K1(p)
ξ
y
x
K1(p)
z

Классификация автоматических систем. Примеры по классификации - student2.ru

ПФ ошибки от регулирующего воздействия:

K(p)
ξ
y
x

Классификация автоматических систем. Примеры по классификации - student2.ru

ПФ от регулирующего воздействия одинакова как для следящей, так и для не следящей системы.

ПФ ошибки от возмущающего воздействия:

K1(p)
K2(p)
z
y
K3(p)
ξ
F

F ≠ 0, x ≠ 0.

F – возмущающее воздействие, помеха KξF.

Классификация автоматических систем. Примеры по классификации - student2.ru

Подставляем (**) в (*) при x = 0:

Классификация автоматических систем. Примеры по классификации - student2.ru

Передаточная функция ошибки возмущающего воздействия есть отношение, где в числителе со знаком минус взята передаточная функция части системы, находящейся между точкой приложения возмущающего воздействия и сумматором (по ходу сигнала).

Поскольку система линейная, соблюдается принцип суперпозиции (независимость прохождения сигналов друг от друга):

Классификация автоматических систем. Примеры по классификации - student2.ru .

Вопрос 9

Устойчивость линейных САУ. Теорема Ляпунова. Критерий Гурвица

Устойчивость – свойство системы возвращаться в условие равновесия после снятия внешних сил, выведших её из состояния равновесия.

t
y

Траектория описывается уравнением

Классификация автоматических систем. Примеры по классификации - student2.ru

Самыми распространёнными критериями определения устойчивости системы являются алгебраический критерий Гурвица, частотные критерии Найквиста и Михайлова.

Теорема Ляпунова:

Если в характеристическом полиноме системы нет корней с положительными или нулевыми вещественными частями, то такая система будет устойчива.

Критерий Гурвица:

Необходимое условие устойчивости:

Все коэффициенты характеристического полинома системы должны быть положительны:

Классификация автоматических систем. Примеры по классификации - student2.ru

Тогда все корни данного уравнения будут иметь отрицательные вещественные части.

Достаточное условие устойчивости

Все диагональные определители матрицы должны быть положительны.

Матрица размера nx n (n – максимальная степень полинома).

По диагонали сверху вниз вписываются коэффициенты от an-1 до a0, остальные по возрастанию вправо, по убыванию влево, и нули.

Например, если полином 4-й степени, то матрица будет иметь вид:

Классификация автоматических систем. Примеры по классификации - student2.ru

Вопрос 10

Частотный критерий Найквиста. Примеры

Частотный критерия Найквиста позволяет определить, какими параметрами устойчивости обладает данная система.

Классификация автоматических систем. Примеры по классификации - student2.ru , Классификация автоматических систем. Примеры по классификации - student2.ru - характеристическая функция разомкнутой системы.

Классификация автоматических систем. Примеры по классификации - student2.ru .

Классификация автоматических систем. Примеры по классификации - student2.ru - характеристическая частотная функция замкнутой системы.

Передаточная функция ошибки:

Классификация автоматических систем. Примеры по классификации - student2.ru

Рассмотрим 2 возможные ситуации:

I. Разомкнутая система устойчива. Найдём условие, при котором замкнутая система тоже будет устойчива.

A(p) = 0 – характеристическое уравнение разомкнутой системы.

Классификация автоматических систем. Примеры по классификации - student2.ru - корни.

Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
корни Михайлова

Классификация автоматических систем. Примеры по классификации - student2.ru .

Фазовый набег: Классификация автоматических систем. Примеры по классификации - student2.ru

-1
F(jω)=1+ K(jω)
K(jω)
Im
Re
ω1
Если разомкнутая система устойчива, то замкнутая система может быть устойчива, если годограф функции K(jω) разомкнутой системы в диапазоне частот от 0 до ∞ не охватывает точку (-1, 0) на вещественной оси.

Примеры:

Статическая система

K1 < K3 < K2, K3 – критический коэффициент усиления.

-1
K1K3K2
Im
Re
-1
Im
Re

Классификация автоматических систем. Примеры по классификации - student2.ru . Астатическая система

Классификация автоматических систем. Примеры по классификации - student2.ru - интегрирующее звено сразу даёт сдвиг 90°. Эта система структурно устойчива.

Система структурно не устойчива с двойным интегрирующим звеном:

-1
Im
Re
Классификация автоматических систем. Примеры по классификации - student2.ru .

Вопрос 11

II. Разомкнутая система неустойчива, а замкнутая система будет устойчивая.

Im
Im
Re
Re

Пусть в уравнении A(p)=0 из n корней m в правой полуплоскости:

Im
Re
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru

Если разомкнутая система неустойчива и её характеристическое уравнение A(p)=0 имеет m корней с положительной вещественной частью, то для устойчивости замкнутой системы фазовый набег вектора F(jω) должен составлять m/2 полных оборота (годограф K(jω) в диапазоне частот от 0 до ∞ m/2 раз против часовой стрелки охватывает точку (-1,0)).

Пример:

Если m=2, то годограф для устойчивого состояния должен 1 раз охватить точку (-1,0).

-1
Im
Re
устойчивая
-1
Im
Re
устойчивая
-1
Im
Re
неустойчивая

m=3:

-1
Im
Re
устойчивая
-1
Im
Re
устойчивая
-1
Im
Re
неустойчивая

Вопрос 12

Частотный критерий Михайлова. Примеры

t
y

Траектория описывается уравнением

Классификация автоматических систем. Примеры по классификации - student2.ru

Все корни должны быть в левой полплоскости:

Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru
α
Классификация автоматических систем. Примеры по классификации - student2.ru
Классификация автоматических систем. Примеры по классификации - student2.ru Классификация автоматических систем. Примеры по классификации - student2.ru

Классификация автоматических систем. Примеры по классификации - student2.ru

Фазовый набег вектора G(jω):

Im
Re
G(0)
Классификация автоматических систем. Примеры по классификации - student2.ru

- Годограф характеристической частотной функции замкнутой системы (годограф Михайлова)

Частотный критерий Михайлова:

Замкнутая система будет устойчива, если годограф характеристической частотной функции замкнутой системы при изменении частоты от 0 до ∞, начинаясь с вещественной оси, последовательно, против часовой стрелки, обходит n квадрантов и в последнем квадранте уходит в бесконечность.

Im
Re
неустойчивое состояние
Im
Re
устойчивое состояние

Вопрос 13

Следствием из применения критерия устойчивости Михайлова является правило чередующихся корней: при движении точки по годографу в направлении возрастания частоты годограф должен последовательно пересекать вещественную и мнимую оси, ни разу не пересекая дважды одну и ту же ось.

Пример:

Классификация автоматических систем. Примеры по классификации - student2.ru

Im
Re
Система устойчива
ω2
ω1
ω3

Вопрос 14

Качество регулирования в установившемся и вынужденном режимах. Примеры

Под качеством регулирования подразумевают величину ошибки регулирования при воздействии на систему детерминированного сигнала.

Чем меньше ошибка, тем выше качество.

K(p)
ξ
y
x

Ошибка ξ(p): ξ(p) = X(p) – Y(p).

Выделение ошибки – функция сумматора.

Определить ошибку можно несколькими способами:

1. а) записать ДУ замкнутой системы;

б) подставить в это уравнение ожидаемое решение в виде какой-то функции с неизвестными коэффициентами;

в) определить эти коэффициенты;

2. Классический операторный метод

а) найти изображение по Лапласу известной функции x(t);

б) по известной структуре системы K(p) находим передаточную функцию ошибки Kξx(p):

Классификация автоматических систем. Примеры по классификации - student2.ru ;

в) обратным преобразованием Лапласа определяем ξ(t) по таблицам.

3. Метод коэффициентов ошибки

а) раскладываем передаточную функцию Kξx(p) в ряд по степеням комплексной переменной p;

б) записываем ДУ в операторной форме:

Классификация автоматических систем. Примеры по классификации - student2.ru ,

где S0,…Sn – коэффициенты ошибки.

в) переходим от операторной к классической форме:

Классификация автоматических систем. Примеры по классификации - student2.ru ;

г) находим коэффициенты через известные коэффициенты полиномов G(p) и A(p).

Выводы:

1. Ошибка регулирования зависит от формы управляющего сигнала и от порядка астатизма системы;

2. Чем динамичнее входной сигнал, тем больший порядок астатизма требуется для приближения к нулевой ошибке;

3. Для нулевой ошибки необходим порядок астатизма на единицу больше числа ненулевых производных входного сигнала;

4. Если порядок астатизма равен числу ненулевых производных, ошибка постоянна;

5. Если порядок астатизма меньше, чем число ненулевых производных, ошибка регулирования будет возрастать со временем;

6. Чем больше коэффициент усиления, тем меньше ошибка.

Вопрос 15

Связь между структурой системы, входным воздействием и ошибкой регулирования. Примеры

Ошибка регулирования зависит от формы регулирующего воздействия и порядка астатизма системы. Порядок астатизма определяется количеством интегрирующих звеньев.

Рассмотрим метод коэффициентов ошибки.

Пример:

На входе приложено постоянное воздействие x(t) = A.

Классификация автоматических систем. Примеры по классификации - student2.ru

Так как в знаменателе нет свободного члена (из-за наличия интегрирующего звена), то c0 =0, значит коэффициент S0 = 0, остальные Si не равны 0.

Классификация автоматических систем. Примеры по классификации - student2.ru

Отсюда мы можем сделать вывод, что для получения нулевой ошибки регулирования порядок астатизма должен быть на единицу больше числа ненулевых производных входного сигнала x(t); если же они равны, то ошибка будет постоянной; если порядок астатизма больше числа ненулевых производных x(t), то ошибка будет расти.

Самыми мощными являются первые компоненты, поэтому есть смысл использовать астатические системы даже при очень динамических входных сигналах.

Вопрос 16????????

Качество переходных режимов, методы определения параметров качества

Δh
T
tр
tс
hуст
hm
h
t

tр – время достижения максимального выброса, tc – время завершения переходного процесса, hm – максимальное значение переходной характеристики.

Классификация автоматических систем. Примеры по классификации - student2.ru .

Классификация автоматических систем. Примеры по классификации - student2.ru - частота колебания на вершине переходного процесса.

Переходные процессы важнее там, где система должна быть быстродействующей.

Способы определения качества переходных процессов

1. Аналитический способ

В его основе лежит передаточная функция системы и знание теории цепей:

Классификация автоматических систем. Примеры по классификации - student2.ru

2. Графический способ(по ЛАЧХ).

Наши рекомендации