Семантический и прагматический
1. Синтаксический аспект предполагает рассмотрение языка как некоторой совокупности знаков, которые преобразуются по определенным правилам и формируют в своих связях определенную систему. В процессе применения этих правил исследователь отвлекается от смысла терминов языка и рассматривает термины только как знаки, образующие в своих связях формулы, из которых выводятся другие формулы по правилам данной языковой системы.
2. Семантический аспект языка требует обращения к содержанию языковых значений. Он предполагает нахождение идеальных объектов и их связей, которые образуют непосредственный смысл терминов и высказываний языка. Так, в аксиоматически построенной геометрии под пирамидой понимается не мысленный образ расположенной в пространстве пирамиды, а идеальный математический объект, вершины которого
не имеют частей, ребра — ширины, а грани — толщины.
3.прагматический аспект языка предполагает рассмотрение языковых выражений в отношении к практической деятельности и специфике социального общения, характерных для определенной исторической эпохи. Это означает, что идеальные объекты и их корреляции, образующие область смыслов языковых выражений, берутся в их отношении к социокультурной среде, породившей ту или иную «популяцию» научных знаний.
Математика как язык науки
во многих случаях математический формализм оказывается единственно возможным способом выразить физические характеристики явлений и процессов, поскольку их естественные свойства и особенно отношения непосредственно не наблюдаемы.
Скажем, каким образом в физических терминах описать тяготение, эффекты электромагнетизма и т.п.? Их можно представить только математически как определенные числовые соотношения в законах, фиксируемых количественными показателями. Современная наука в лице квантовой механики и чуть ранее теория относительности лишь прибавили абстрактности теоретическим объектам, вполне лишая их наглядности. Только и остается апеллировать к математике. Заявил же однажды Л. Ландау, что современному физику вовсе не обязательно знать физику, ему достаточно знать математику.
Рассмотренное обстоятельство и выдвигает математику на роль языка науки.
Г. Галилей "Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, который сначала научился постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики".
Д. Гиббс "Математика - тоже язык". Ханшельвуд объявляет, что ученые должны знать математику как родной язык.
В. Налимов, , предложившего вероятностные модели языка. Хорошая наука, пишет он, говорит на языке математики. Мы, люди, почему-то устроены так, что воспринимаем Мироздание через пространство, время и число. Это значит, что мы подготовлены к тому, чтобы обращаться к математике, подготовлены эволюцией живого, то есть априорно.
"Меня часто обвиняют, что я применяю математику в исследовании сознания, языковедения, биологической эволюции. Но разве там есть математика как таковая? Вряд ли. Математикой я пользуюсь как Наблюдатель. Так мне удобнее мыслить, иначе я не могу. Пространство, время, число и логика - это прерогатива Наблюдателя".
Ситуация порой складывается в науке так, что без применения соответствующего математического языка понять характер физического, химического и т.п. процесса невозможно.
П. Дирак, что каждый новый шаг в развитии физики требует все более высокой математики.
XX в. Создавая планетарную модель атома, Э. Резерфорд испытал математические трудности.
Вначале его теорию не приняли: она не звучала доказательно, и виной тому явилось незнание Резерфордом теории вероятности, на основе механизма которой только и возможно было понять модельное представление атомных взаимодействий.
Осознав это, выдающийся уже к тому времени ученый, обладатель Нобелевской премии , записался в семинар математика профессора Лэмба и в течение двух лет вместе со студентами прослушал курси отработал практикум по теории вероятности. На ее основе Резерфорд смог описать поведение электрона, придав своей структурной модели убедительную точность и получив признание.
Напрашивается вопрос, что же содержится в объективных явлениях такое математическое, благодаря чему они и поддаются описанию на языке математики, на языке количественных характеристик?
Это однородные единицы вещества, распределяемые в пространстве и времени. Те науки, которые дальше других прошли путь к выделению однородности, и оказываются лучше приспособленными для использования в них математики. В частности, более всего - физика.
В. Ленин, отмечая серьезные успехи естествознания и прежде всего физического знания на рубеже XIX-XX столетий, видел одну из причин именно в том, что природу удалось приблизить "к таким однородным элементам материи, законы движения которых допускали математическую обработку".
17. Философско-методологическое значение теории множеств. Парадоксы теории множеств.