Тема 6. Передаточные функции и характеристики разомкнутых САУ

Системы САУ в большинстве случаев являются замкнутыми системами. Однако при их анализе (например, устойчивости) и проектировании часто предварительно рассматривается разомкнутая цепь звеньев, которая затем замыкается.

Различают последовательное, параллельное и параллельное с обратной связью соединение звеньев.

Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru

Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru

Последовательным соединением звеньев называют такое соединение, когда выходная величина предыдущего звена является входной величиной последующего звена (схема а), т.е. ym-1 = хm.

Передаточная функция разомкнутой цепи n последовательно соединенных звеньев равна произведению передаточных функций всех звеньев:

W(p) = y(p)/x(p) = W1(p)∙W2(p) ∙…∙Wn(p). (1)

Полагая p = jω, перейдем от передаточных функций в операторном виде к частотным характеристикам.

АФЧХ = W(jω) = W1(jω)∙W2(jω) ∙…∙Wn(jω) = H(ω)∙exp[φ(ω)] =

= H1(ω)∙H2(ω) ∙…∙Hn(ω)∙expj[φ1(ω) + φ2(ω) + … + φn(ω)]. (2)

АЧХ = H(ω) = H1(ω)∙H2(ω) ∙…∙Hn(ω). (3)

ФЧХ = φ(ω) = φ1(ω) + φ2(ω) + … + φn(ω). (4)

ЛАЧХ = L(ω) = 20lgH(ω) = 20 Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru . (5)

Таким образом, при последовательном соединении звеньев амплитудно-частотные характеристики перемножаются , а логарифмические амплитудно-частотные и фазовые частотные характеристики складываются.

Рассмотрим получение асимптотической ЛАЧХ разомкнутой цепи при последовательном соединении звеньев на следующем примере.

Пусть передаточная функция разомкнутой цепи описывается следующей формулой:

W(p) = Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru . (6)

При этом коэффициент демпфирования ξ принимаем 0,5 <ξ< 1 (при таких значениях ξ можно не учитывать «горб» АЧХ колебательного звена).

Асимптотическую ЛАЧХ можно построить непосредственно по передаточной функции. При этом каждому сомножителю (Тр + 1) в знаменателе соответствует точка излома характеристики при ω = 1/Т с последующим наклоном минус 20 дБ/декаду, а каждому сомножителю такого же типа в числителе соответствует точка излома также при ω = 1/Т, но с последующим наклоном плюс 20дБ/декаду. Сомножителю (Т2р2 + 2ξТр + 1) в знаменателе соответствует излом характеристики при ω = 1/Т с наклоном минус 40 дБ/декаду.

Методика построения асимптотической ЛАЧХ сводится к следующему:

1) определяем сопрягающие частоты типовых звеньев в порядке возрастания. Так, например, дляслучая Т1 > T3 > T4 > T2 > T5:

ω1 = 1/Т1; ω2 = 1/Т3; ω3 = 1/Т4; ω4 = 1/Т2; ω5 = 1/Т5;

2) вычисляем на частоте ω = 1 ординату L(1) = 20lgK, где К – общий коэффициент усиления разомкнутой системы. Через полученную точку проводим низкочастотную асимптоту ЛАЧХ, представляющую собой прямую с наклоном минус 20∙m дБ/декаду, где m – число интегрирующих звеньев (в нашем примере согласно формуле (6) m = 1).

3) изменяем наклон асимптот ЛАЧХ на сопрягающих частотах по отношению с наклоном, который имела ЛАЧХ до рассматриваемой частоты.

Фазовая частотная характеристика определяется по выражению:

φ(ω) = - 90о + arctg(ωT1) + arctg(ωT2) - arctg(ωT3) - arctg Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru - arctg(ωT5)

Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru

Параллельным соединением звеньев называется такое соединение, когда на входы всех звеньев подается одна и та же величина, а выходные сигналы суммируются (схема б). Если соединяются n звеньев, то входной сигнал равен: х = х1 = х2 = … хi = … = хn, а выходной сигнал у = Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru .

Переходя к операторной форме представления выходной функции, получим:

y(p) = x(p)∙ Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru ,

откуда: W(p) = y(p)/x(p) = Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru . (7)

Таким образом, при параллельном соединении звеньев передаточные функции каждого звена суммируются.

Так как передаточная функция W(p) есть ничто иное, как изображение весовой функции, то весовая функция g(t), а, следовательно, и переходная функция h(t) разомкнутой цепи, состоящей из параллельно соединенных n звеньев, равны сумме соответственно весовых и передаточных функций отдельных звеньев:

g(t) = Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru ; h(t) = Тема 6. Передаточные функции и характеристики разомкнутых САУ - student2.ru . (8)

При параллельном соединении звеньев с обратной связью (схема «в» замкнутой системы САУ) обратная связь может быть положительной, если сигнал обратной связи хос складывается с входным сигналом х, или отрицательной, если сигнал обратной связи хос вычитается из х.

При отрицательной обратной связи схема описывается следующим уравнением:

y(p) = W1(p)∙[x(p) – xoc(p)]. (9)

Вместе с тем сигнал обратной связи хос определяется в соответствии с выражением:

xoc(p) = W2(p)∙y(p). (10)

Подставляя значение хос из формулы (10) в уравнение (9), получим:

y(p) = W1(p)∙[x(p) – W2(p)∙y(p)] (11)

Решим уравнение (11) относительно y(p):

y(p)∙[1 + W1(p)∙W2(p)] = W1(p)∙x(p). (12)

Отсюда:

у(р) = W1(p)∙x(p)/[1 + W1(p)∙W2(p)] = Wз(p)∙x(p). (13)

Передаточная функция замкнутой системы при отрицательной обратной связи Wз(p) определяется в соответствии с выражением (13):

Wз(p) = у(р)/х(р) = W1(p)/[1 + W1(p)∙W2(p)] (14)

При положительной обратной связи:

Wз(p) = у(р)/х(р) = W1(p)/[1 - W1(p)∙W2(p)] (14)

Наши рекомендации