Проведенной через перпендикуляр АЕ
На рис. 188 показано построение перпендикуляра к плоскости,
определяемой треугольником ABC. Перпендикуляр'проведен через точку А.
Так как фронтальная проекция перпендикуляра к плоскости должна быть
Перпендикулярна к фронтальной проекции фронтали плоскости, а его
Горизонтальная проекция перпендикулярна к горизонтальной проекции
Горизонтали, то в плоскости через точку А проведены фронталь с проекциями
A'D' и A"D" и горизонталь А"Е", А'Е'. Конечно, эти прямые не обязательно
Проводить именно через точку А.
Далее проведены проекции перпендикуляра: M"N"% A"D", M'N'% A'E'. Почему
проекции на рис. 188 на участках A"N" и А'М' показаны штриховыми линиями?
Потому, что здесь рассматривается плоскость, заданная треугольником ABC, а
не только этот треугольник: перпендикуляр находится частично перед
Плоскостью, частично за ней.
На рис. 189 и 190 показано построение плоскости, проходящей через точку
А перпендикулярно к прямой ВС. На рис. 189 плоскость выражена следами.
Построение начато с проведения через точку А горизонтали искомой плоскости:
так как горизонтальный след плоскости должен быть перпендикулярен к В'С, то
и горизонтальная проекция горизонтали должна быть перпендикулярна к В'С.
Поэтому A'N'% В'С'. Проекция A"N" \\ оси х, как это должно быть у
горизонтали. Затем проведен через точку " ( " - фронтальная проекция
фронтального следа горюонтали AN) след f"o % В"С", получена точка X, и
проведен след h'o " II-4'-V' (h^LB'C).
На рис. 190 плоскость определена ее фронталью AM и горизонталью AN. Эти
прямые перпендикулярны к ВС (А"М"% В"С", A'N' %
В'С); определяемая ими плоскость перпендикулярна к ВС.
Так как перпендикуляр к плоскости перпендикулярен к каждой прямой,
Проведенной в этой плоскости, то, научившись проводить плоскость
Перпендикулярно к прямой, можно воспользоваться этим для проведения
Перпендикуляра из некоторой точки А к прямой общего положения ВС. Очевидно,
можно наметить следующий план построения проекций искомой прямой:
Через точку А провести плоскость (назовем ее ), перпендикулярную к
ВС;
Определить точку К пересечения прямой ВС с ил. ;
Соединить точки А и К отрезком прямой линии.
Прямые АК и ВС взаимно перпендикулярны.
Пример построения дан на рис. 191. Через точку А проведена плоскость
( ), перпендикулярная к ВС. Это сделано при помощи фронтали, фронтальная
Проекция
A"F" которой проведена перпендикулярно к фронтальной проекции В"С", и
горизонтали, горизонтальная проекция которой перпендикулярна к В'С.
Затем найдена точка К, в которой прямая ВС пересекает пл. . Для этого
Через прямую ВС проведена горизонтально-проецирующая плоскость (на чертеже
она задана только горизонтальным следом 1). Пл. пересекает пл.
по прямой с проекциями 1'2' и 1 "2". В пересечении этой прямой с прямой ВС
Получается точка К. Прямая АК является искомым перпендикуляром к ВС.