Принцип суперпозиции ( наложения ) полей

Если в данной точке пространства различные электрически заряженные частицы 1, 2, 3... и т.д. создают электрические поля с напряженностью Е1, Е2, Е3 ... и т.д., то результирующая напряженность в данной точке поля равна геометрической сумме напряженностей.

Силовые линии эл. поля - непрерывные линии, касательными к которым являются векторы напряженности эл.поля в этих точках.

Однородное эл.поле - напряженность поля одинакова во всех точках этого поля.

Свойства силовых линий: не замкнуты (идут от + заряда к _ ), непрерывны, не пересекаются,

их густота говорит о напряженности поля (чем гуще линии, тем больше напряженность).

Графически надо уметь показать эл.поля: точечного заряда, двух точечных зарядов, обкладок

конденсатора ( в учебнике есть).

37 ВОППРОС:

Теорема Гаусса (закон Гаусса) — один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь (а именно равенство с точностью до постоянного коэффициента) между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью. Применяется отдельно для вычисления электростатических полей.

Также теорема Гаусса верна для любых полей, для которых верен закон Кулона или его аналог (например, для ньютоновской гравитации). При этом она является, как принято считать, более фундаментальной, так как позволяет в частности вывести степень расстояния[1] в законе Кулона «из первых принципов», а не постулировать ее (или не находить эмпирически).

В этом можно видеть фундаментальное значение теоремы Гаусса (закона Гаусса) в теоретической физике.Существуют аналоги (обобщения) теоремы Гаусса и для более сложных полевых теорий, чем электродинамика.

Теорема Гаусса для напряжённости электрического поля в вакууме

Общая формулировка: Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду. СГС СИ

— поток вектора напряжённости электрического поля через замкнутую поверхность .

— Q полный заряд, содержащийся в объёме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

Замечание: поток вектора напряжённости через поверхность не зависит от распределения заряда (расположения зарядов) внутри поверхности.

В дифференциальной форме теорема Гаусса выражается следующим образом:СГС СИ

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Теорема Гаусса может быть доказана как теорема в электростатике исходя из закона Кулона (см. ниже). Формула однако также верна в электродинамике, хотя в ней она чаще всего не выступает в качестве доказываемой теоремы, а выступает в качестве постулируемого уравнения (в этом смысле и контексте ее логичнее называть законом Гаусса[2].

Применение теоремы Гаусса

Являясь (вкупе с уравнением о нулевой циркуляции электрического поля) основным полевым уравнением электростатики (вместе эти два уравнения в дифференциальной форме эквивалентны уравнению Пуассона — основному и единственному дифференциальному уравнению классической теории для электростатического потенциала.

В электродинамике теорема Гаусса (закон Гаусса) также остается (полностью в том же виде) одним из главных уравнений — одним из четырех уравнений Максвелла.

В некоторых ситуациях теорема Гаусса может быть использована для прямого и легкого вычисления электростатического поля непосредственно. Это ситуации, когда симметрия задачи позволяет наложить на напряженность электрического поля такие дополнительные условия, что вместе с теоремой Гаусса этого хватает для прямого элементарного вычисления (без применения двух обычных общих способов — решения уравнения в частных производных или лобового интегрирования кулоновских полей для элементарных точечных зарядов).

Именно таким способом с использованием теоремы Гаусса может быть выведен и сам закон Кулона (см. выше).

Конкретные примеры такого применения теоремы Гаусса разобраны здесь ниже.

В них используются следующие величины и обозначения:

Объёмная плотность заряда

где — (бесконечно малый) элемент объема,

Поверхностная плотность заряда

где DS — (бесконечно малый) элемент поверхности.

Линейная плотность заряда

где DL — длина бесконечно малого отрезка. (Первая используется для зарядов, непрерывно распределенных по объему, вторая — для распределенных по поверхности, третья — для распределенных по одномерной линии (кривой, прямой)

38 ВОПРОС:

Наши рекомендации