Вопрос 2. Определители, свойства, вычисление.

Каждой квадратной матрице А может быть поставлено в соответствие некоторое число, вычисляемое по определенному правилу с помощью элементов матрицы. Такое число называют определителем (или детерминантом) матрицы А и обозначают символом |А|, D или det A. При этом порядком определителя называют порядок соответствующей матрицы.

Пусть дана матрица второго порядка Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Тогда определитель второго порядкаматрицы А вводится по формуле:

Вопрос 2. Определители, свойства, вычисление. - student2.ru ,

где Вопрос 2. Определители, свойства, вычисление. - student2.ru - элементы определителя, Вопрос 2. Определители, свойства, вычисление. - student2.ru , Вопрос 2. Определители, свойства, вычисление. - student2.ru , Вопрос 2. Определители, свойства, вычисление. - student2.ru – члены определителя.

В каждый член определителя входит по одному элементу из каждой строки и каждого столбца.

Пример 11:

Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Свойства определителей:

Свойство 1:При перестановке строк матрицы на место столбцов и обратно определитель матрицы не меняется.

Пусть задана матрица Вопрос 2. Определители, свойства, вычисление. - student2.ru , а матрица Вопрос 2. Определители, свойства, вычисление. - student2.ru получена из Вопрос 2. Определители, свойства, вычисление. - student2.ru перестановкой строк на место столбцов.

Вопрос 2. Определители, свойства, вычисление. - student2.ru называется транспонированной матрицей по отношению к Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Тогда, Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Свойство 2:При перестановке двух столбцов (или строк) абсолютное значение определителя матрицы не меняется, а знак меняется на противоположный.

Пусть задана матрица Вопрос 2. Определители, свойства, вычисление. - student2.ru , полученная из Вопрос 2. Определители, свойства, вычисление. - student2.ru перестановкой столбцов. Тогда,

Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Свойство 3: Если матрица имеет два одинаковых столбца (или строки), то определитель матрицы равен нулю.

Свойство 4: Если все элементы какого-либо столбца (строки) матрицы умножить на одно и то же число, то определитель матрицы окажется умноженным на то же число.

Вопрос 2. Определители, свойства, вычисление. - student2.ru ; Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Вопрос 2. Определители, свойства, вычисление. - student2.ru ;

Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Свойство 5: Если все элементы какого-либо столбца (или строки) матрицы равны нулю, то определитель матрицы равен нулю.

Свойство 6: Если соответствующие элементы двух столбцов или двух строк матрицы пропорциональны, то Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Вопрос 2. Определители, свойства, вычисление. - student2.ru ; Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Свойство 7: Пусть все элементы какого-либо столбца (строки) матрицы Вопрос 2. Определители, свойства, вычисление. - student2.ru представляют собой сумму двух слагаемых, и пусть соответственные столбцы матрицы Вопрос 2. Определители, свойства, вычисление. - student2.ru и Вопрос 2. Определители, свойства, вычисление. - student2.ru состоят из этих слагаемых.

Вопрос 2. Определители, свойства, вычисление. - student2.ru ; Вопрос 2. Определители, свойства, вычисление. - student2.ru ; Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Тогда, Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Свойство 8: Определитель матрицы не меняется, если к элементам какого-либо столбца (или строки) матрицы прибавить элементы другого столбца (или строки), умноженные на одно и то же число.

Пусть Вопрос 2. Определители, свойства, вычисление. - student2.ru и Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Тогда,

Вопрос 2. Определители, свойства, вычисление. - student2.ru

Замечание. Рассмотренные свойства выполняются для определителей любого порядка.

Матрице третьего порядка Вопрос 2. Определители, свойства, вычисление. - student2.ru соответствует определитель

Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Для запоминания знаков слагаемых и сомножителей в каждом слагаемом полезно запомнить следующее правило.

Правило Крамера (треугольников).

Определитель третьего порядка – это алгебраическая сумма шести тройных произведений. Каждое слагаемое в этой сумме содержит по одному элементу из каждой строки и каждого столбца.

Со знаком «+» берутся произведения, сомножители которых находятся на главной диагонали и в вершинах треугольников с основаниями параллельными главной диагонали

Вопрос 2. Определители, свойства, вычисление. - student2.ru Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Со знаком «-» берутся произведения, сомножители которых расположены на побочной диагонали и в вершинах треугольников с основаниями параллельными этой диагонали

Вопрос 2. Определители, свойства, вычисление. - student2.ru Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Прежде, чем сформулировать определение определителя Вопрос 2. Определители, свойства, вычисление. - student2.ru -го порядка, необходимо ввести понятие минора и алгебраического дополнения элементов матрицы.

Рассмотрим определитель третьего порядка

Вопрос 2. Определители, свойства, вычисление. - student2.ru Вопрос 2. Определители, свойства, вычисление. - student2.ru Вопрос 2. Определители, свойства, вычисление. - student2.ru Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Выберем произвольный элемент этого определителя (для определенности Вопрос 2. Определители, свойства, вычисление. - student2.ru ). Минором этого элемента Вопрос 2. Определители, свойства, вычисление. - student2.ru называют определитель второго порядка, получаемый из данного вычеркиванием третьей строки и второго столбца, на пересечении которых стоит элемент Вопрос 2. Определители, свойства, вычисление. - student2.ru :

Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Минором Вопрос 2. Определители, свойства, вычисление. - student2.ru элемента Вопрос 2. Определители, свойства, вычисление. - student2.ruопределителя Вопрос 2. Определители, свойства, вычисление. - student2.ru - го порядка называют определитель Вопрос 2. Определители, свойства, вычисление. - student2.ru – го порядка, получаемый из исходного вычеркиванием Вопрос 2. Определители, свойства, вычисление. - student2.ru -й строки и Вопрос 2. Определители, свойства, вычисление. - student2.ru -го столбца на пересечении которых расположен элемент Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Алгебраическим дополнением Вопрос 2. Определители, свойства, вычисление. - student2.ru элемента Вопрос 2. Определители, свойства, вычисление. - student2.ru называют его минор, взятый с соответствующим знаком Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Теорема (разложение определителя по элементам строки (столбца)).

Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения

Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Теорема Сумма произведений элементов какой-либо строки (столбца) на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Задан определитель Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Для него выполняется Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Вычисление определителя Вопрос 2. Определители, свойства, вычисление. - student2.ru - го порядка происходит по теореме 1, причем раскладывать определитель удобнее по той строке (столбцу), в которой все элементы кроме одного равны нулю. Если такой строки нет, то ее нужно получить, применяя свойства определителей.

Итак, если дана матрица Вопрос 2. Определители, свойства, вычисление. - student2.ru -го порядка

Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Определителем этой матрицы называется число, полученное по следующему правилу:

Вопрос 2. Определители, свойства, вычисление. - student2.ru ,

причем Вопрос 2. Определители, свойства, вычисление. - student2.ru , а минор Вопрос 2. Определители, свойства, вычисление. - student2.ru будет определителем матрицы Вопрос 2. Определители, свойства, вычисление. - student2.ru -го порядка.

Пример 12: Вычислить определитель матрицы А = Вопрос 2. Определители, свойства, вычисление. - student2.ru

Вопрос 2. Определители, свойства, вычисление. - student2.ru

= -5 + 18 + 6 = 19.

Пример 13:. Даны матрицы А = Вопрос 2. Определители, свойства, вычисление. - student2.ru , В = Вопрос 2. Определители, свойства, вычисление. - student2.ru . Найти det (AB).

1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13; det (AB) = det A ×det B = -26.

2- й способ: AB = Вопрос 2. Определители, свойства, вычисление. - student2.ru , det (AB) = 7×18 - 8×19 = 126 –

– 152 = -26.

Пример 14:

Вычислить определитель Вопрос 2. Определители, свойства, вычисление. - student2.ru .

Вопрос 2. Определители, свойства, вычисление. - student2.ru = -1 Вопрос 2. Определители, свойства, вычисление. - student2.ru

Вопрос 2. Определители, свойства, вычисление. - student2.ru = -1(6 – 4) – 1(9 – 1) + 2(12 – 2) = -2 – 8 + 20 = 10.

Вопрос 2. Определители, свойства, вычисление. - student2.ru = Вопрос 2. Определители, свойства, вычисление. - student2.ru = 2(0 – 2) – 1(0 – 6) = 2.

Вопрос 2. Определители, свойства, вычисление. - student2.ru = Вопрос 2. Определители, свойства, вычисление. - student2.ru = 2(-4) – 3(-6) = -8 + 18 = 10.

Значение определителя: -10 + 6 – 40 = -44.

Наши рекомендации