Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз.

1. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru нүктелерімен Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісін Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru элементар кесінділерге (бөліктерге) бөлеміз: Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru | | • | • | • | • | • | • | • |

О Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

2. Әрбір Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru , Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru элементар кесіндінің ішінде жатқан, кез келген бір Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru нүктесін аламыз және осы нүктедегі функцияның мәнін есептейміз, яғни Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru шамасын табамыз.

3. Функцияның табылған Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru мәндерін сәйкес элементар кесінділердің ұзындығына, яғни Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru көбейтеміз: Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru .

4. Барлық осындай көбейтінділердің Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru қосындысын құрамыз:

Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru қосындысы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясының Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісіндегі интегралдық қосындысы деп аталады. Элементар кесінділердің ең үлкен ұзындығын Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru деп белгілейміз: Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru .

5. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru ұмтылғанда, яғни Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru ұмтылғанда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru интегралдық қосындысының шегін табамыз. Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru - интегралдық қосындысы үшін ақырлы шек бар болып, ол Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісін дербес бөліктерге бөлу жолына және Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru нүктелерін таңдап алу тәсіліне тәуелсіз болса, онда ол шекті Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясының Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісіндегі анықталған интегралы деп атайды және оны Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru символымен белгілейді. Сонымен, Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

Мұндағы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru санын интегралдың төменгі шегі, ал Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru санын — жоғары шегі дейді. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru — интеграл астындағы функция, Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru интеграл астындағы өрнек деп аталады.

Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru саны бар болса, онда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде интегралданатын функция деп аталады. Енді анықталған интегралдың бар болуы туралы теореманы келтірейік.

Теорема (Коши). Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде үзіліссіз болса, онда оның осы аралықта анықталған интегралы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru бар. Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясының Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru аралығында санаулы бірінші текті үзіліс нүктелері болса, онда бұл функция Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru аралығында интегралданады.

Анықталған интегралдың анықтамасынан шығатын оның кейбір қасиеттері:

1. Анықталған интеграл өзінің интегралдау айнымаласына тәуелді емес, ол тек интегралдың шектері мен Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясынан тәуелді, яғни Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru ,

2. Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru болса, онда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

3. Кез келген нақты Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru саны үшін: Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

Анықталған интегралдың қасиеттері.Бұл бөлімде интегралданатын функцияларды қарастырамыз.

1. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru , мұнда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru - нақты сан.

2. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru .

3. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

4. Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru теңсіздігі орындалса, онда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru .

5. Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru болса, онда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru .

6. Орта мән туралы теорема. Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде үзіліссіз болса, онда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінен Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru теңдігі орындалатындай Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru саны табылады.

Ньютон – Лейбниц формуласы.Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде интегралданатын болса, онда ол осы кесіндінің ішінде жатқан кез келген Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде де интегралданады. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru , мұнда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясын қарастыралық.

Теорема. Егер Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде үзіліссіз болса, онда Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы да Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде үзіліссіз болады.

Теорема. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде үзіліссіз болсын. Онда

Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

Салдар. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде үзіліссіз болған кез келген Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясының осы кесіндіде алғашқы функциясы бар, ол Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясына тең. Енді интегралды есептеудің негізгі формуласы Ньютон – Лейбниц формуласына көшелік.

Негізгі теорема. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru функциясы Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru кесіндісінде үзіліссіз және Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

оның осы кесіндідегі алғашқы функциясы болсын. Онда

Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru

Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru формуласы Ньютон- Лейбниц формуласы деп аталады. Ньютон-Лейбниц формуласы анықталған интегралды есептеу үшін өте қолайлы құрал. Оны қолдану үшін интеграл астындағы жатқан функцияның бір алғашқы функциясын білу жеткілікті.

1-мысал. Анықталған интегралдың анықтамасы. функциясы кесіндісінде анықталсын, мұнда . Төменгі амалдарды орындаймыз. - student2.ru .

Наши рекомендации