Бесконечно малые функции и их основные свойства

Функция y=f(x) называется бесконечно малой при x→a или при x→∞, если бесконечно малые функции и их основные свойства - student2.ru или бесконечно малые функции и их основные свойства - student2.ru , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

бесконечно малые функции и их основные свойства - student2.ru Примеры.

  1. Функция f(x)=(x-1)2 является бесконечно малой при x→1, так как бесконечно малые функции и их основные свойства - student2.ru (см. рис.).
  2. Функция f(x) = tgx – бесконечно малая при x→0.
  3. f(x) = ln (1+x)– бесконечно малая при x→0.
  4. f(x) = 1/x– бесконечно малая при x→∞.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→aв виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то бесконечно малые функции и их основные свойства - student2.ru .

Обратно, если бесконечно малые функции и их основные свойства - student2.ru , то f (x)=b+α(x), где a(x) – бесконечно малая при x→a.

Доказательство.

  1. Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|<ε. Тогда|f(x) – b|< ε. А это и значит, что бесконечно малые функции и их основные свойства - student2.ru .
  2. Если бесконечно малые функции и их основные свойства - student2.ru , то при любом ε>0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначимf(x) – b= α, то |α(x)|<ε, а это значит, что a – бесконечно малая.

3. Бесконечно малые функции обладают следующими свойствами:

1) Алгебраическая сумма любого конечного числа бесконечно малых в некоторой точке функцийесть функция, бесконечно малая в той же точке.

2) Произведение любого конечного числа бесконечно малых в некоторой точке функций есть функция, бесконечно малая в той же точке.

3) Произведение бесконечно малой в некоторой точке функции на функцию ограниченную есть функция, бесконечно малая в той же точке.

БЕСКОНЕЧНО БОЛЬШАЯ ФУНКЦИЯ - функция переменного х, к-рая в данном процессе изменения х становится и остается по абсолютной величине больше любого наперед заданного числа. Точнее, функция f(x), определенная в окрестности точки х0, наз. бесконечно большой функцией при х, стремящемся к x0, если для любого числа М > 0 найдется такое число δ = δ (М) > 0, что для всех х ≠ х0 и таких, что |х - х0 | < δ, выполняется неравенство |f(x)| > M. Этот факт записывается так:

бесконечно малые функции и их основные свойства - student2.ru

Аналогичным образом определяются

бесконечно малые функции и их основные свойства - student2.ru

Напр.,

бесконечно малые функции и их основные свойства - student2.ru

означает, что для любого М > 0 найдется такое δ = δ (M) > 0, что для всех z < - δ выполняется неравенство f(x) > M. Изучение Б. б. ф. может быть сведено к изучению бесконечно малых функций, т. к. если f(x) есть Б. б. ф., то функция ψ (х) = 1/f(x) является бесконечно малой.

Пусть функция f(x) определена на некотором множестве Е и х0 – предельная точка множества Е.

Функция f(x) называется непрерывной в точке х0, если

1. Она определена в точке х0

2. Существует конечный предел

бесконечно малые функции и их основные свойства - student2.ru

3. Этот предел равен значению функции в точке х0.

Иначе говоря, функция у=f(x) называется непрерывной в точке, если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть

бесконечно малые функции и их основные свойства - student2.ru

Наши рекомендации