Заметим, что не всякая линия является графиком функции
Определение 6: Функция называется явной, если она задана формулой y=f(x).
Определение 7: Функция называется неявной, если она задана уравнением F(x; у)=0.
Способы задания функции.
Существуют три основных способа задания функций: аналитический, табличный и графический.
1) Аналитический способ - зависимость между переменными величинами определяется с помощью формулы, указывающей, какие и в каком порядке действия нужно выполнить, чтобы получить значение функции, соответствующее данному значению аргумента.
2) Табличный способ - зависимость между переменными величинами определяется с помощью указанной таблицы. Область определения – множество чисел, расположенных в первой строке (столбце) таблицы, область значений – множество чисел, расположенных во второй строке (столбце) таблицы. Так задаются функции с конечными значениями.
3) Графический способ - зависимость между переменными задаётся посредством графика.
Определение 1: Если на некотором множестве X определена функция z=j(x) со множеством значений Z, а на множестве Z - функция y=f(z), то функция у=f[j(х)] называется сложной функцией от х (или суперпозицией функций j(x)и f(z)), а переменная z - промежуточной переменной сложной функции.
Определение 2: Пусть X и Y—некоторые множества и пусть задана функция f, т. е. множество пар чисел (х; у) (хÎX, уÎY), в котором каждое число х входит в одну и только одну пару, а каждое число y - по крайней мере в одну пару. Если в каждой паре этого множества числа х и у поменять местами, то получим множество пар чисел (у; х), которое называется обратной функцией j к функции f.
Обратная функция в данном понимании может функцией и не являться.
Функция может быть задана параметрически на множестве Х посредством переменной t, называемой параметром:
Классификация функций.
Определение 1: Простейшими элементарными функциями являются:
· постоянная функция f(х)=С, С=const,
· степенная функция f(х)=хa (a—любое число),
· показательная функция f(х)=ах (0<а¹1),
· логарифмическая функция f(х)=logaх (0<а¹1),
· тригонометрические функции f(х)=sinx, f(х)=cosx, f(х)=tgx, f(х)=ctgx,
· обратные тригонометрические функции f(х)=arcsinx, f(х)=arccosx, f(х)=arctgх, f(х)=arcctgx.
Определение 2: Все функции, получаемые с помощью конечного числа арифметических действий над простейшими элементарными функциями, а также суперпозицией этих функций, составляют класс элементарных функций.
На основании определения следует, что элементарные функции являются функции заданные аналитически.
Классификация элементарных функций:
1) Функция вида Р(х)=a0хm+a1хm-1+…+am-1х+am, где m³0 - целое число, a0, a1, …, am-1, am любые числа — коэффициенты (а0¹0), называется целой рациональной функцией или многочленом степени m. Многочлен первой степени называется также линейной функцией.
2) Функция, представляющая собой отношение двух целых рациональных функций
, называется дробно-рациональной функцией.
Совокупность целых рациональных (1) и дробно-рациональных (2) функций образует класс рациональных функций.
3) Функция, полученная с помощью конечного числа суперпозиций и четырех арифметических действий над степенными функциями как с целыми, так и с дробными показателями и не являющаяся рациональной, называется иррациональной.
Алгебраические функции: рациональные (1 и 2) и иррациональные (3).
4) Всякая функция, не являющаяся алгебраической, называется трансцендентной функцией.
Лекция 6
Числовая последовательность
Бесконечно малые и бесконечно большие последовательности
Предел числовой последовательности