Уравнение Бернулли. Статическое и динамическое давления
ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ
Методическое пособие по теме:
Исследование реологических свойств биологических жидкостей.
Методы исследования кровообращения.
Реография.
Составитель: Преподаватель
Ковалева Л.В.
Основные вопросы темы:
- Уравнение Бернулли. Статическое и динамическое давления.
- Реологические свойства крови. Вязкость.
- Формула Ньютона.
- Число Рейнольдса.
- Ньютоновская и Неньютоновская жидкость
- Ламинарное течение.
- Турбулентное течение.
- Определение вязкости крови с помощью медицинского вискозиметра.
- Закон Пуазейля.
- Определение скорости кровотока.
- Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
- Физические основы баллистокардиографии.
Уравнение Бернулли. Статическое и динамическое давления.
Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение называется условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, протекающее в единицу времени через любое сечение трубы, остается постоянным (Q = const) и средние скорости течения в различных сечениях трубы обратно пропорциональны площадям этих сечений: и т . д.
Выделим в потоке идеальной жидкости трубку тока, а в ней — достаточно малый объем жидкости массой , который при течении жидкости перемещается из положения А в положение В.
Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положении А имеют давление скорость и находятся на высоте h1от нулевого уровня; в положении В — соответственно . Сечения трубки тока соответственно S1 и S2.
Жидкость, находящаяся под давлением, обладает внутренней потенциальной энергией (энергией давления), за счет которой она может совершать работу. Этаэнергия Wp измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в сечениях Si и S2. Совершаемая при этом работа Ар равняется разности потенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжести и на изменение кинетической энергии массы
жидкости:
Следовательно, Ар = Ah + AD
Перегруппировав члены уравнения, получим
Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие
разделив это уравнение на , получим
где — плотность жидкости.
Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:
при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.
Для горизонтальной трубки тока гидростатическое давление остается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид
статистическое давление обусловливает потенциальную энергию жидкости (энергию давления), динамическое давление — кинетическую.
Из этого уравнения следует вывод, называемый правилом Бернулли:
статическое давление невязкой жидкости при течении по горизонтальной трубе возрастает там, где скорость ее уменьшается, и наоборот.
Вязкость жидкости
Реология- это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических особенностей крови как вязкой жидкости. В реальной жидкости между молекулами действуют силы взаимного притяжения, обусловливающие внутреннее трение. Внутреннее трение, например, вызывает силу сопротивления при помешивании жидкости, замедление скорости падения брошенных в нее тел, а также при определенных условиях — ламинарное течение.
Ньютон установил, что сила FBвнутреннего трения между двумя слоями жидкости, движущимися с различными скоростями, зависит от природы жидкости и прямо пропорциональна площади S соприкасающихся слоев и градиенту скорости dv/dz между ними F = Sdv/dz где — коэффициент пропорциональности, называемый коэффициентом вязкостиили просто вязкостью жидкости и зависящий от ее природы.
Сила FB действует касательно к поверхности соприкасающихся слоев жидкости и направлена так, что ускоряет слой, движущийся более медленно, замедляет слой, движущийся более быстро.
Градиент скорости в данном случае характеризует быстроту изменения скорости между слоями жидкости, т. е. в направлении, перпендикулярном направлению течения жидкости. Для конечных значений он равен .
Единица коэффициента вязкости в ,в системе СГС - , эта единица называется пуазом (П). Соотношение между ними: .
На практике вязкость жидкости характеризуют относительной вязкостью , под которой понимают отношение коэффициента вязкости данной жидкости к коэффициенту вязкости воды при той же температуре:
У большинства жидкостей (вода, низкомолекулярные органические соединения, истинные растворы, расплавленные металлы и их соли) коэффициент вязкости зависит только от природы жидкости и температуры (с повышением температуры коэффициент вязкости понижается). Такие жидкости называются ньютоновскими.
У некоторых жидкостей, преимущественно высокомолекулярных (например, растворы полимеров) или представляющих дисперсные системы (суспензии и эмульсии), коэффициент вязкости зависит также от режима течения — давления и градиента скорости. При их увеличении вязкость жидкости уменьшается вследствие нарушения внутренней структуры потока жидкости. Такие жидкости называются структурно вязкими или неньютоновскими. Их вязкость характеризуют так называемым условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (давление, скорость).
Кровь представляет собой суспензию форменных элементов в белковом растворе — плазме. Плазма – практически ньютоновская жидкость. Поскольку 93 % форменных элементов составляют эритроциты, то при упрощенном рассмотрении кровь – это суспензия эритроцитов в физиологическом растворе. Поэтому, строго говоря, кровь должна быть отнесена к неньютоновским жидкостям. Кроме того, при течении крови по сосудам наблюдается концентрация форменных элементов в центральной части потока, где вязкость соответственно увеличивается. Но поскольку вязкость крови не так велика, этими явлениями пренебрегают и считают ее коэффициент вязкости постоянной величиной.
Относительная вязкость крови в норме составляет 4,2—6. При патологических условиях она может снижаться до 2—3 (при анемии) или повышаться до 15—20 (при полицитемии), что сказывается на скорости оседания эритроцитов (СОЭ). Изменение вязкости крови - одна из причин изменения скорости оседания эритроцитов (СОЭ). Вязкость крови имеет диагностическое значение. Некоторые инфекционные заболевания увеличивают вязкость, другие же, например брюшной тиф и туберкулез, - уменьшают.
Относительная вязкость сыворотки крови в норме 1,64—1,69 и при патологии 1,5—2,0. Как и у любой жидкости, вязкость крови возрастает при снижении температуры. При повышении жесткости эритроцитарной мембраны, например при атеросклерозе, вязкость крови также возрастает, что приводит к увеличению нагрузки на сердце. Вязкость крови неодинакова в широких и узких сосудах, причем влияние диаметра кровеносного сосуда на вязкость начинает сказываться при просвете менее 1 мм. В сосудах тоньше 0,5 мм вязкость уменьшается прямо пропорционально укорочению диаметра, поскольку в них эритроциты выстраиваются вдоль оси в цепочку наподобие змейки и окружены слоем плазмы, изолирующей «змейку» от сосудистой стенки.