Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата

1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата. При падении на аэростат действуют силы тяжести G = тg, сила сопротивления воздуха R и подъемная сила Т (рис. 121). Аэростат принимаем за материальную точку.

2. Составляем дифференциальное уравнение движения:

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru .

3. Дважды интегрируем уравнение движения. Для постоянных сил
интеграл берется просто:

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru

Начальные условия: t = 0, у = Н, Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru . Отсюда находим константы интегрирования С1 =mv0, C2 = тН. Получаем уравнения

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru , (1)

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru . (2)

Аналогично составляем уравнение при подъеме аэростата.

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru

Рис. 121 Рис. 122

Сила сопротивления при этом меняет свое направление (рис. 122). Оставляя ось у прежней, время отсчитываем от нуля с момента подъема:

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru

Интегрируя уравнение

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru , (3)

получаем

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru . (4)

Начальные условия: t = 0, у = 0, Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru . Находим константы интегрирования: С3 = 0, С2= 0. Из (4) следует

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru . (5)

4. Находим искомое время падения. Обозначаем его за t1, а время подъема — за t2. По условию t1 +t2 = t0. Подставляем в (1,2) условия: t = t1, Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru , у = 0, а в (5) t = t2, у = Н. Получаем систему трех уравнений с неизвестными t1, Н, v0:

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru (6)

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru , (7)

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru . (8)

Исключая неизвестную высоту Н и неизвестную начальную скорость v0, получаем

Решение. 1. Ось у, направим вверх, поместив ее начало в нижней точке траектории аэростата - student2.ru .

Наши рекомендации