Т.4. Резонанс в электрических цепях
Определение резонанса
В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.
Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).
В резонансном режиме колебания энергии между магнитным и электрическим полями замыкаются внутри цепи, обмен энергией между источником и цепью отсутствует, а вся поступающая от источника энергия преобразуется в другие виды, т.е. электрическая цепь по отношению к источнику энергии ведет себя как чисто активное сопротивление R (активная проводимость G). На этом основании условие для резонансного режима можно сформулировать через параметры элементов схемы, а именно: входное сопротивление и, соответственно, входная проводимость схемы со стороны выводов источника энергии должна носить чисто активный характер: Zвх=Rвх; Yвх=Gвх; Xвх=0; Bвх=0; или в комплексной форме: Im[Zвх]=0, Im[Yвх]=0.
Резонанс напряжений
Резонанс в цепи с последовательным соединением источника энергии и реактивных элементов L и C получил название резонанса напряжений. Простейшая схема такой цепи показана на рис. 59.
Комплексное входное сопротивление схемы: .
Условие резонанса напряжений: Xэ= XL - XC или wL = , откуда w0 = - резонансная или собственная частота.
Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.
В резонансном режиме полное сопротивление схемы имеет минимальное значение и равно активному сопротивлению:
= R,
а ток максимален и совпадает по фазе с напряжением источника: I=E/R; j = 0.
Векторная диаграмма напряжений и тока показана на рис. 60.
Напряжения на реактивных элементах равны по модулю, противоположны по фазе и взаимно компенсируют друг друга:
; ,
а напряжение на резисторе равно напряжению источника : UR=IR=U=E.
Равные по модулю напряжения на реактивных элементах UL=UC = могут значительно превосходить напряжение источника U = Е при условии, что XL=XC>>R.
Выясним энергетические процессы, протекающие в цепи в резонансном режиме. Пусть в цепи протекает ток i =Imsinwt, тогда напряжение на конденсаторе составит:
.
Сумма энергий магнитного и электрического полей равна:
Таким образом, сумма энергий магнитного и электрического полей равна постоянному значению. Это значит, что между магнитным и электрическим полями происходит непрерывный обмен энергией, суммарное значение которой постоянно, а обмен энергией между источником и цепью отсутствует, при этом поступающая от источника энергия преобразуется в другие виды..
Электрическая цепь с последовательным соединением элементов R, L, C в технике получила название последовательного колебательного контура. Свойства такой цепи как колебательного контура характеризуют следующие параметры: - резонансная частота; r = - волновое сопротивление; Q = - добротность.
Чем больше добротность контура Q, тем выразительнее проявляются в нем резонансные явления; например, напряжения на реактивных элементах больше напряжения источника в Q раз: UL = UC = UQ.
При изменении частоты источника w = var будут изменяться сопротивления реактивных элементов и, как следствие, будут изменяться ток в цепи и напряжения на отдельных участках.
Частотными характеристиками контура называются зависимости сопротивлений отдельных элементов и участков от частоты XL =wL; XC = ; X =XL-XC ; Z= (рис. 61).
Резонансными характеристиками называются зависимости режимных параметров от частоты: UL, UC, I, j = f(w)(рис. 62).
Полосой пропускания резонансного контура называют область частот Dw = w1-w2, на границах которой ток I в раз меньше своего максимального значения, т.е. I=0,707Imax. Полоса пропускания контура обратно пропорциональна его добротности: Dw = . На рис. 63 в относительных единицах представлено семейство резонансных характеристик с различными значениями добротности.
Резонанс токов
Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.
Комплексная входная проводимость схемы:
Условие резонанса токов: или , откуда - резонансная (собственная) частота.
Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.
В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение: = G, а ток источника также минимален и совпадает по фазе с напряжением источника ( j = 0): I =UY = UG.
Токи в ветвях с реактивными элементами IL=U(-jBL), IC =U(jBC) равны по модулю, противоположны по фазе и компенсируют друг друга, а ток в резисторе G равен току источника (I=IG=UG). Равные по модулю токи в реактивных элементах IL = IC могут значительно превосходить ток источника I при условии, что BL=BC>>G .
Векторная диаграмма токов и напряжений показана на рис. 65.
Электрическая цепь с параллельным соединением элементов G, L и C в технике получила название параллельного колебательного контура. Свойства такой цепи как колебательного контура характеризуют следующие параметры: - резонансная частота; - волновая проводимость; - добротность.
Резонансные характеристики параллельного контура представлены на рис. 66.
|
Резонанс в сложных схемах
Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.
На рис. 67 приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.
Входная комплексная проводимость схемы:
Условие резонанса:
или
Отличие данного условия резонанса от аналогичного условия для простейшей схемы рис. 64 состоит в том, что в этом уравнении присутствуют параметры активных элементов R1 и R2.
Анализ полученного уравнения показывает, что при изменении параметров одного из элементов схемы возможны различные варианты решения.
При изменении сопротивлений R1 и R2 возможны два варианта решения: 1)существует одна точка резонанса (корни уравнения вещественные; один положительный, а другой отрицательный); 2)резонанс в схеме невозможен (корни уравнения комплексные).
При изменении индуктивности L или емкости C возможны три варианта решения: 1)существует две точки резонанса (корни уравнения вещественные и оба положительные); 2)существует одна точка резонанса (корни уравнения равные и положительные); 3)резонанс в схеме невозможен (корни уравнения комплексные).
Решая уравнение резонанса относительно частоты, получим:
Анализ этого уравнения показывает, что при R1 = R2 резонансная частота имеет выражение , как и для простейшей схемы рис. 1, а при для w0 получается неопределенное решение, что физически означает резонансный режим на любой частоте.
На рис.10 приведена схема последовательного контура, в которой реальные элементы (катушка и конденсатор) представлены различными схемами замещения.
Входное комплексное сопротивление схемы:
Условие резонанса:
или
Анализ этого уравнения показывает неоднозначную зависимость условия резонанса от значений параметров каждого элемента схемы.
Если сложная схема содержит в своей структуре несколько (более двух) разнородных реактивных элементов, то при изменении частоты в ней могут наблюдаться несколько резонансных режимов (как тока, так и напряжения) в зависимости от структуры схемы.