Сила тяжести и вес тела. Упругие силы. Силы трения.

Частным, но крайне важным для нас видом силы всемирного тяготения является сила притяжения тел к Земле. Эту силу называют силой тяжести. Согласно закону всемирного тяготения, она выражается формулой

Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru , (1)

где m – масса тела, М – масса Земли, R – радиус Земли, h – высота тела над поверхностью Земли. Сила тяжести направлена вертикально вниз, к центру Земли.

Силой тяжести называется сила, действующая на любое находящееся вблизи земной поверхности тело.

Она определяется как геометрическая сумма действующей на тело силы гравитационного притяжения к Земле Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru и центробежной силы инерции Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru , учитывающей эффект суточного вращения Земли вокруг собственной оси, т.е. Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru . Направление силы тяжести является направлением вертикали в данном пункте земной поверхности.

НО величина центробежной силы инерции очень мала по сравнению с силой притяжения Земли (их отношение составляет примерно 3∙10-3), то обычно силой Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru пренебрегают. Тогда Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru .

Вес тела

Вес тела – это сила, с которой тело, вследствие его притяжения к Земле, действует на опору или подвес.

По третьему закону Ньютона обе эти силы упругости равны по модулю и направлены в противоположные стороны. После нескольких колебаний тело на пружине оказывается в покое. Это значит, что сила тяжести Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru по модулю равна силе упругости Fупр пружины. Но этой же силе равен и вес тела.

Таким образом, в нашем примере вес тела, который мы обозначим буквой Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru , по модулю равен силе тяжести:

Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru .

Под действием внешних сил возникают деформации (т.е. изменение размеров и формы) тел. Если после прекращения действия внешних сил восстанавливаются прежние форма и размеры тела, то деформация называется упругой. Деформация имеет упругий характер в случае, если внешняя сила не превосходит определенного значения, называемого пределом упругости.

Упругие силы возникают во всей деформированной пружине. Любая часть пружины действует на другую часть с силой упругости Fупр.

Удлинение пружины пропорционально внешней силе и определяется законом Гука:

  Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru    

k – жесткость пружины. Видно, что чем больше k, тем меньшее удлинение получит пружина под действием данной силы.

Так как упругая сила отличается от внешней только знаком, т.е. Fупр = –Fвн, закон Гука можно записать в виде

Сила тяжести и вес тела. Упругие силы. Силы трения. - student2.ru ,
Fупр = –kx.

Сила трения

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как и упругие силы, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел.

Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя.

Сила трения покоя не может превышать некоторого максимального значения (Fтр)max. Если внешняя сила больше (Fтр)max, возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения. Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя.

Fтр = (Fтр)max = μN.

Коэффициент пропорциональности μ называют коэффициентом трения скольжения.

Коэффициент трения μ – величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей.

При движении твердого тела в жидкости или газе возникает сила вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.

Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях Fтр ~ υ, при больших скоростях Fтр ~ υ2. При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.

Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.

Наши рекомендации