Елементи матлогіки

Алгебра висловлювань

1.Поняття висловлювань

Під висловленням розуміють будь-яке твердження про яке можна сказати, що воно істинне чи хибне.

Наприклад, твердження, що 3>2 істинне, 2>3 – хибне.

Відмітимо, щодовільне визначення не являється висловленням. Теореми (будь-яка) є висловленням. Наприклад, колом є замкнута крива, точки якої рівновіддалені від заданої – не є висловленням.

Висловленням є: якщо f(x) диференційована в околі Х0, то вона неперервна.

В подальшому матлогіка не цікавиться змістом висловлень, а лише їх істинністю чи хибністю. Висловлення позначається p, q, r, s, t… Істинне висловлення приймають «1», якщо хибне «0».

Над висловленням визначені наступні операції: заперечення, диз’юнкція, кон’юнкція, імплікація, еквівалентність.

Визначення

1. Запереченням ( Елементи матлогіки - student2.ru або ùp) висловлювання p є висловлювання, яке істинне, коли p – хибне і хибне, якщо p істинне.

2. Диз’юнкцією ( Елементи матлогіки - student2.ru ) висловлювань p і q називають висловлення, яке є хибним, коли p і q хибні і істинне в інших випадках.

3. Кон’юнкція ( Елементи матлогіки - student2.ru ) висловлювань p і q називають висловленням, коли воно є істинне лише коли при p і q – істинні, і хибне в інших випадках.

4. Імплікація Елементи матлогіки - student2.ru висловлень p і q називають висловлення, яке є хибним лише коли p істинне а q - хибне і істинне в інших випадках.

5. Еквівалентністю Елементи матлогіки - student2.ru висловлювань p і q називають висловлення, яке є істинним тоді і тільки тоді, коли p і q мають однакові істинності значення.

Таблиця істинності

змінні змінні НЕ АБО І ЯКЩО Тоді і тільки тоді
Елементи матлогіки - student2.ru Елементи матлогіки - student2.ru Елементи матлогіки - student2.ru Елементи матлогіки - student2.ru Елементи матлогіки - student2.ru Елементи матлогіки - student2.ru Елементи матлогіки - student2.ru
  Заперечення Диз‘юнкція Кон‘юнкція Імплікація Еквівалентність

Через P позначено множену усіх висловлень. На множені P визначенні: унітарна операція ùі бінарні Елементи матлогіки - student2.ruвідносно яких P є замкнута ( у множені P містяться окрім окремих висловлень також результати операцій над ними). Оскільки аргументи функції та результати дії операцій належать одній і тій ж множині, то виникає алгебра логіки.

Наши рекомендации