Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.

ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ (неравновесная термодинамика), изучает общие закономерности поведения систем, не находящихся в состоянии термодинамического равновесия. В таких системах имеют место разнообразные неравновесные процессы (теплопередача, диффузия, электрич. ток, хим. р-ции и т. п.), к-рые являются необратимыми в термодинамич. смысле (см. Обратимые и необратимые процессы). Согласно ур-нию Клаузиуса, для неадиабатич. процессов изменение энтропии системы dS равно:

Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения. - student2.ru

где deS = Q/T- "внешнее" изменение энтропии, связанное с обратимым теплообменом с окружающей средой (Q-бесконечно малое кол-во теплоты, T-абс. т-ра), diS- "внутреннее" изменение энтропии, обусловленное самопроизвольным протеканием в системе необратимых процессов. При этом di S Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения. - student2.ru О, где знак равенства относится к состоянию равновесия или к случаю обратимых (квазистатич.) процессов. Величина diS играет центр. роль в Т. н. п.

К осн. задачам Т. н. п. относят исследование балансов физ. величин (энергии, массы, энтропии и др.) при переходах, превращениях и диссипации энергии, а также установление законов эволюции макроскопич. систем. В этой связи в Т.н.п. появляется и играет важную роль время t-переменная, отсутствующая в равновесной термодинамике (равновесные в термодинамич. смысле процессы протекают бесконечно медленно). Поэтому вместо (1) рассматривается соотношение:

dS/dt = deS/dt + diS/dt,

где величина P = diS/dt наз. глобальным произ-вом энтропии (т.е. относящееся ко всему объему системы).

Различают феноменологическую Т. н. п. и статистич. теорию неравновесных процессов. Феноменологическая Т. н. п., в свою очередь, подразделяется на линейную и нелинейную теории. Обычно в Т. н. п. рассматриваются три типа систем: однородные, прерывные и непрерывные. В однородных системах в любой момент времени интенсивные св-ва (параметры состояния) - т-ра, давление, хим. потенциал - одинаковы по всему объему. Прерывные (вентильные, гетерогенные) системы состоят из двух и более однородных частей, разделенных либо границей раздела фаз, либо вентилем (напр., газы в сосудах, соединенных мембраной или капилляром), так что св-ва меняются скачком при переходе из одной части в другую. Непрерывными наз. системы, интенсивные св-ва к-рых можно считать непрерывными ф-циями координат точки внутри системы (полевых переменных) и времени.

Соотношения, характеризующие процессы переноса массы, энергии, заряда, энтропии и т.д., записываются в виде балансовых ур-ний. Такие ур-ния м. б. записаны как для непрерывных, так и для прерывных систем. В них всегда фигурируют величины двух типов, одни из к-рых трактуются как потоки, другие-как силы. Потоки характеризуют скорость переноса физ. величины (энергии, массы, энтропии и т.д.) через воображаемую единичную площадку или скорость хим. р-ции. Термодинамич. силы-это причины, порождающие потоки. Для процессов переноса в непрерывных системах силы имеют характер градиентов (т-ры, концентрации и т.п.), в прерывных - конечных разностей этих величин.

Неравновесные процессы принято подразделять на скалярные, векторные и тензорные, если потоки и силы являются соотв. скалярами, векторами или тензорами. В зависимости от этого для описания процессов нужно использовать скалярное, векторное поле или поле тензора 2-го ранга. К группе скалярных процессов относят, в частности, хим. р-ции (скорость р-ции в каждой точке внутри системы характеризуется скалярной величиной). К векторным процессам относят, напр., теплопроводность и диффузию (с ними связаны поля векторов потоков тепла и в-ва). Примером тензорного процесса служит вязкое течение. Классификация процессов по тензорным св-вам не является формальной, но связана с содержанием принципа Кюри (см. ниже). Ур-ния балансов массы, импульса, полной энергии имеют смысл законов сохранения. Баланс внутр. энергии суть первое начало термодинамики. Его можно представить в виде ур-ния:

Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения. - student2.ru

где и, u, q-уд. локальные (относящиеся к нек-рому выделенному элементу объема) внутр. энергия, объем и кол-во тепла соотв.; p -давление; Jk- диффузионный поток k-го компонента в поле внеш. силы Fk, действующей на единицу массы k-го компонента (точка означает скалярное произведение); V-вектор скорости центра масс системы в поле внутр. напряжений; П-тензор вязких напряжений (вязкий тензор давления); Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения. - student2.ru (двоеточие означает двукратную свертку). Для невязких систем в поле сил тяготения последние два слагаемых обращаются в нуль, и приведенная формулировка первого начала аналогична формулировкам, принятым в равновесной термодинамике.

Наши рекомендации