Определение с помощью собственной информации

Также можно определить энтропию случайной величины, введя предварительно понятия распределения случайной величины Определение с помощью собственной информации - student2.ru , имеющей конечное число значений:[2]

Определение с помощью собственной информации - student2.ru

Определение с помощью собственной информации - student2.ru

и собственной информации:

Определение с помощью собственной информации - student2.ru

Тогда энтропия определяется как:

Определение с помощью собственной информации - student2.ru

От количества возможных состояний Определение с помощью собственной информации - student2.ru случайной величины Определение с помощью собственной информации - student2.ru зависит единица измерения количества информации и энтропии: бит, нат, трит или хартли.
От основания логарифма зависит числовая величина единицы измерения количества информации и энтропии.

Энтропия является количеством, определённым в контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию:

Определение с помощью собственной информации - student2.ru бит на одно кидание (при условии его независимости), а количество возможных состояний равно: Определение с помощью собственной информации - student2.ru возможных состояния (значения) ("орёл" и "решка").

У источника, который генерирует строку, состоящую только из букв «А», энтропия равна нулю: Определение с помощью собственной информации - student2.ru , а количество возможных состояний равно: Определение с помощью собственной информации - student2.ru возможное состояние (значение) («А») и от основания логарифма не зависит.
Это тоже информация, которую тоже надо учитывать. Примером запоминающих устройств в которых используются разряды с энтропией равной нулю, но с количеством информацииравным 1 возможному состоянию, т.е. не равным нулю, являются разряды данных записанных в ПЗУ, в которых каждый разряд имеет только одно возможное состояние.

Так, например, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.

2. Количество энтропии не всегда выражается целым числом битов.

Математические свойства

1. Неотрицательность: Определение с помощью собственной информации - student2.ru .

2. Ограниченность: Определение с помощью собственной информации - student2.ru , что вытекает из неравенства Йенсена для вогнутой функции Определение с помощью собственной информации - student2.ru и Определение с помощью собственной информации - student2.ru . Если все Определение с помощью собственной информации - student2.ru элементов из Определение с помощью собственной информации - student2.ru равновероятны, Определение с помощью собственной информации - student2.ru .

3. Если Определение с помощью собственной информации - student2.ru независимы, то Определение с помощью собственной информации - student2.ru .

4. Энтропия — выпуклая вверх функция распределения вероятностей элементов.

5. Если Определение с помощью собственной информации - student2.ru имеют одинаковое распределение вероятностей элементов, то Определение с помощью собственной информации - student2.ru .

Эффективность

Алфавит может иметь вероятностное распределение далекое от равномерного. Если исходный алфавит содержит Определение с помощью собственной информации - student2.ru символов, тогда его можно сравнить с «оптимизированным алфавитом», вероятностное распределение которого равномерное. Соотношение энтропии исходного и оптимизированного алфавита — это эффективность исходного алфавита, которая может быть выражена в процентах. Эффективность исходного алфавита с Определение с помощью собственной информации - student2.ru символами может быть также определена как его Определение с помощью собственной информации - student2.ru -арная энтропия.

Энтропия ограничивает максимально возможное сжатие без потерь (или почти без потерь), которое может быть реализовано при использовании теоретически — типичного набора или, на практике, — кодирования Хаффмана, кодирования Лемпеля — Зива — Велча или арифметического кодирования.

Вариации и обобщения

B-арная энтропия

В общем случае b-арная энтропия (где b равно 2, 3, …) источника Определение с помощью собственной информации - student2.ru с исходным алфавитом Определение с помощью собственной информации - student2.ru и дискретным распределением вероятности Определение с помощью собственной информации - student2.ru где Определение с помощью собственной информации - student2.ru является вероятностью Определение с помощью собственной информации - student2.ru ( Определение с помощью собственной информации - student2.ru ), определяется формулой:

Определение с помощью собственной информации - student2.ru

Примеры:

Тринарная энтропия

При бросании трёхгранного (b = 3) «чижа», тринарная энтропия источника («чижа») Определение с помощью собственной информации - student2.ru с исходным алфавитом (цифры на гранях трёхгранного «чижа») Определение с помощью собственной информации - student2.ru и дискретным равномерным распределением вероятности (сечение «чижа» — равносторонний треугольник, плотность материала «чижа» однородна по всему объёму «чижа») Определение с помощью собственной информации - student2.ru где Определение с помощью собственной информации - student2.ru является вероятностью Определение с помощью собственной информации - student2.ru ( Определение с помощью собственной информации - student2.ru ) равна:

Определение с помощью собственной информации - student2.ru трит.

Тетрарная энтропия

При бросании четырёхгранного (b = 4) «чижа», тетрарная энтропия источника («чижа») Определение с помощью собственной информации - student2.ru с исходным алфавитом (цифры на гранях четырёхгранного «чижа») Определение с помощью собственной информации - student2.ru и дискретным равномерным распределением вероятности (поперечное сечение «чижа» — квадрат, плотность материала «чижа» однородна по всему объёму «чижа») Определение с помощью собственной информации - student2.ru где Определение с помощью собственной информации - student2.ru является вероятностью Определение с помощью собственной информации - student2.ru ( Определение с помощью собственной информации - student2.ru ), равна:

Определение с помощью собственной информации - student2.ru тетрит.

Условная энтропия

Если следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а, следовательно, и энтропия), очевидно, меньше. Для учёта таких фактов используется условная энтропия.

Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть, вероятности двухбуквенных сочетаний):

Определение с помощью собственной информации - student2.ru

где Определение с помощью собственной информации - student2.ru — это состояние, зависящее от предшествующего символа, и Определение с помощью собственной информации - student2.ru — это вероятность Определение с помощью собственной информации - student2.ru при условии, что Определение с помощью собственной информации - student2.ru был предыдущим символом.

Например, для русского языка без буквы «ё» Определение с помощью собственной информации - student2.ru [3].

Через частную и общую условные энтропии полностью описываются информационные потери при передаче данных в канале с помехами. Для этого применяются так называемыеканальные матрицы. Для описания потерь со стороны источника (то есть известен посланный сигнал) рассматривают условную вероятность Определение с помощью собственной информации - student2.ru получения приёмником символа Определение с помощью собственной информации - student2.ru при условии, что был отправлен символ Определение с помощью собственной информации - student2.ru . При этом канальная матрица имеет следующий вид:

  Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru
Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru
Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru
Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru
Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru

Очевидно, вероятности, расположенные по диагонали, описывают вероятность правильного приёма, а сумма всех элементов столбца даёт вероятность появления соответствующего символа на стороне приёмника — Определение с помощью собственной информации - student2.ru . Потери, приходящиеся на передаваемый сигнал Определение с помощью собственной информации - student2.ru , описываются через частную условную энтропию:

Определение с помощью собственной информации - student2.ru

Для вычисления потерь при передаче всех сигналов используется общая условная энтропия:

Определение с помощью собственной информации - student2.ru

Определение с помощью собственной информации - student2.ru означает энтропию со стороны источника, аналогично рассматривается Определение с помощью собственной информации - student2.ru — энтропия со стороны приёмника: вместо Определение с помощью собственной информации - student2.ru всюду указывается Определение с помощью собственной информации - student2.ru (суммируя элементы строки можно получить Определение с помощью собственной информации - student2.ru , а элементы диагонали означают вероятность того, что был отправлен именно тот символ, который получен, то есть вероятность правильной передачи).

Взаимная энтропия

Взаимная энтропия или энтропия объединения предназначена для расчёта энтропии взаимосвязанных систем (энтропии совместного появления статистически зависимых сообщений) и обозначается Определение с помощью собственной информации - student2.ru , где Определение с помощью собственной информации - student2.ru характеризует передатчик, а Определение с помощью собственной информации - student2.ru — приёмник.

Взаимосвязь переданных и полученных сигналов описывается вероятностями совместных событий Определение с помощью собственной информации - student2.ru , и для полного описания характеристик канала требуется только одна матрица:

Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru
Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru
Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru
Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru Определение с помощью собственной информации - student2.ru

Для более общего случая, когда описывается не канал, а в целом взаимодействующие системы, матрица необязательно должна быть квадратной. Очевидно, сумма всех элементов столбца с номером Определение с помощью собственной информации - student2.ru даёт Определение с помощью собственной информации - student2.ru , сумма строки с номером Определение с помощью собственной информации - student2.ru есть Определение с помощью собственной информации - student2.ru , а сумма всех элементов матрицы равна 1. Совместная вероятность Определение с помощью собственной информации - student2.ru событий Определение с помощью собственной информации - student2.ru и Определение с помощью собственной информации - student2.ru вычисляется как произведение исходной и условной вероятности:

Определение с помощью собственной информации - student2.ru

Условные вероятности производятся по формуле Байеса. Таким образом, имеются все данные для вычисления энтропий источника и приёмника:

Определение с помощью собственной информации - student2.ru

Определение с помощью собственной информации - student2.ru

Взаимная энтропия вычисляется последовательным суммированием по строкам (или по столбцам) всех вероятностей матрицы, умноженных на их логарифм:

Определение с помощью собственной информации - student2.ru

Единица измерения — бит/два символа, это объясняется тем, что взаимная энтропия описывает неопределённость на пару символов: отправленного и полученного. Путём несложных преобразований также получаем

Определение с помощью собственной информации - student2.ru

Взаимная энтропия обладает свойством информационной полноты — из неё можно получить все рассматриваемые величины.

История

В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки двух основных направлений:теории информации, которая использует понятие вероятности и эргодическую теорию для изучения статистических характеристик данных и коммуникационных систем, и теории кодирования, в которой используются главным образом алгебраические и геометрические инструменты для разработки эффективных кодов.

Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

Контрольные вопросы:

  1. Что такое информационная энтропия?
  2. Какие виды энтропии известный на сегодняшний день?
  3. Определение по Шеннону.
  4. Определение с помощью собственной информации
  5. Математические свойства
  6. Эффективность энтропии

Тема 3. Количество информации и избыточность.

Цель лекции: Изучить понятие избыточности

Вопросы:

1. Как связаны между собой понятия количества информации и энтропия?

2. Определите понятие избыточности.

3. Определите количество информации в сообщении, составленном из к неравновероятных символов.

4. Дайте определение дифференциальной энтропии и сформулируйте её основные свойства.

Количество информации есть уменьшение энтропии вследствие опыта.

Если неопределенность снимается полностью, то информация равна энтропии:

І = Н ,

В противном случае – разнице между начальной и конечной энтропии :

I=H1-H2 (3.1)

Наибольшее количество информации получается, когда полностью снимается максимальная неопределенность – когда вероятности всех событий были одинаковы

Определение с помощью собственной информации - student2.ruмакс

р – вероятность реализации в условиях равной вероятности всех событий. Избыточность информации есть разность между максимально возможным колличеством информации и энтропией:

Определение с помощью собственной информации - student2.ru (3.2)

Определение с помощью собственной информации - student2.ru

Количество информации может быть представленно как произведение общего числа сообщений К на среднюю энтропию:

Определение с помощью собственной информации - student2.ru

Для случая равновероятных и взаимонезависимых символов первичного алфавита количество информации в К сообщениях алфавита m равно:

Определение с помощью собственной информации - student2.ru (бит).

Для неравновероятных алфавитов энтропия на символ алфавита :

Определение с помощью собственной информации - student2.ru (бит/символ),

А количество информации (КИ) в сообщении, составленном из к неравновероятных символов

Определение с помощью собственной информации - student2.ru

Требования, которым должна удовлетворять количество информации, следующие:

1. Аддитивность. КИ в двух независимых сообщениях должно равняться сумме КИ в каждом из них.

2. Необходимость монотонного возрастания с увеличением возможностей выбора состояния (чем больше число состояний, тем больше неопределенность).

3. КИ, содержащейся в сообщении о достоверном событии, и неопределенность должны равняться нулю.

4. Независимость КИ от качественного содержания сообщения, в частности от степени его важности для получателя, от степени возможных последствий и т. д.

Наши рекомендации