Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1

В строке Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru получить все нули за исключением элемента Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru , затем найти алгебраическое дополнение этого элемента.

Дайте определение обратной матрицы.

Обратная матрица Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru – такая матрица, при умножении на которую квадратная матрица с определителем, отличным от нуля, даёт единичную матрицу.

31. Какие матрицы имеют обратную?

Только квадратные матрицы с определителем, отличным от нуля.

32. Как найти элемент Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru обратной матрицы?

Для этого нужно найти алгебраическое дополнение элемента Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru .

33. Как найти матрицу Х из уравнения А·Х=В, если detА≠0?

Для этого нужно найти обратную матрицу Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru и умножить на неё обе части уравнения, приписывая её слева.

34. Как найти матрицу Х из уравнения Х·А=В, если detА≠0?

Для этого нужно найти обратную матрицу Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru и умножить на неё обе части уравнения, приписывая её справа.

35. Объясните, как понимаете слова: «Определена внутренняя операция над элементами множества А».

Значит, задан закон, согласно которому двум элементам из множества Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ставится в соответствие третий элемент также из этого множества. В линейном пространстве это сумма.

36. Объясните, как понимаете слова: «Определена внешняя операция над элементами множества А».

Значит, задан закон, согласно которому одному элементу из множества Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru и другому элементу из множества Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ставится в соответствие третий элемент из множества Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru . В линейном пространстве это произведение.

Сформулируйте аксиомы, характеризующие внутреннюю операцию в определении линейного пространства.

1) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ;

2) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ;

3) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ;

4) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ;

5) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru .

Сформулируйте аксиомы, характеризующие внешнюю операцию в определении линейного пространства.

1) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ;

2) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru .

Сформулируйте аксиомы, связывающие внешнюю и внутреннюю операции в определении линейного пространства.

1) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru ;

2) Опишите, как свести вычисление определителя порядка n к вычислению определителя порядка n-1 - student2.ru .

Дайте определение понятий линейной комбинации, линейно зависимой и линейно независимой систем векторов.

Линейная комбинация – вектор, являющийся суммой нескольких векторов, умноженных на не обязательно одинаковые коэффициенты.

Линейно зависимая система векторов – система векторов, которая возможна при наличии таких коэффициентов при векторах, что их сумма равна нулевому вектору. В такой системе хотя бы один вектор является линейной комбинацией других.

Линейно независимая система векторов – система векторов, в которой ни один вектор не является линейной комбинацией других.

Сформулируйте теорему о необходимом и достаточном условии линейной зависимости системы векторов.

Для того чтобы система векторов была линейно зависима, необходимо и достаточно, наличие хотя бы одного вектора, являющегося линейной комбинацией других.

Наши рекомендации