Методы подбора переменных в модели множественной регрессии

Множественная регрессия имеет вид

Е[Y/ x1, x2….. xm]=f (x1,x2….xm)

Уравнение множественной регрессии:

Y=f(β, X)+ ε

Где (x1,x2….xm)- вектор объясняющих переменных,

β -вектор параметров ( подлежащих определению),

ε – вектор случайных ошибок(отклонений)

Y – зависимая переменная

С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:

• иметь высокую вариабельность;

• быть сильно коррелированными с объясняемой переменной;

• быть слабо коррелированными между собой;

• быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.

Объясняющие переменные подбираются с помощью статистических мето­дов. Процедура подбора переменных состоит из следующих этапов:

1. На основе накопленных знаний составляется множество так называе­мых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать Методы подбора переменных в модели множественной регрессии - student2.ru

2. Собирается статистическая информация о реализациях как объясняе­мой переменной, так и потенциальных объясняющих переменных. Форми­руется вектор у наблюдаемых значений переменной Y и матрица X наблю­даемых значений переменных Методы подбора переменных в модели множественной регрессии - student2.ru в виде

Методы подбора переменных в модели множественной регрессии - student2.ru

3. Исключаются потенциальные объясняющие переменные, характеризу­ющиеся слишком низким уровнем вариабельности.

4. Рассчитываются коэффициенты корреляции между всеми рассматри­ваемыми переменными.

5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.

Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, которые не были включены в модель.

Идея метода показателей информационной емкости сводится к выбору таких объясняющих переменных, которые сильно коррелированы с объясня­емой переменной, и одновременно, слабо коррелированы между собой. В ка­честве исходных точек этого метода рассматриваются вектор Методы подбора переменных в модели множественной регрессии - student2.ru и матрица R.

Рассматриваются все комбинации потенциальных объясняющих пере­менных, общее количество которых составляет I = 2W-1. Для каждой комбинации потенциальных объясняющих переменных рас­считываются индивидуальные и интегральные показатели информацион­ной емкости.

Индивидуальные показатели информационной емкости в рамках конк­ретной комбинации рассчитываются по формуле

Методы подбора переменных в модели множественной регрессии - student2.ru ; (l=1,2,…,L; j=1,2,… Методы подбора переменных в модели множественной регрессии - student2.ru ), где l – номер переменной, Методы подбора переменных в модели множественной регрессии - student2.ru – количество переменных в рассматриваемой комбинации.

Интегральныерассчитываются по формуле

Методы подбора переменных в модели множественной регрессии - student2.ru , (l=1,2,…,L). В качестве объясняющих выбирается такая комбинация переменных, которой соответствует максимальное значение интегрального показателя и формационной емкости.

Наши рекомендации