Общий случай расчета нормальных сечений
Расчет прочности нормальных сечений
Рассмотрим для примера однопролетную железобетонную балку, свободно лежащую на двух опорах, симметрично загруженную двумя сосредоточенными силами. Участок балки между грузами находится в условиях чистого изгиба; в его пределах действует только изгибающий момент М, поперечная сила равна нулю.
Рис. 8.1. Схема изгибаемого железобетонного элемента
На определенной ступени загружения в бетоне растянутой зоны этого участка под воздействием растягивающих напряжений образуются нормальные трещины, т.е. трещины, направленные перпендикулярно продольной оси балки. На участках между опорой и грузом действует одновременно изгибающий момент М и поперечная сила Q. Здесь образуются наклонные трещины.
В сечениях, нормальных к продольной оси элементов – изгибаемых, внецентренно сжатых, внецентренно растянутых – при двузначной эпюре напряжений в стадии III характерно одно и то же НДС. В расчетах прочности элементов усилия, воспринимаемые сечением, нормальным к продольной оси элемента, определяют по расчетным сопротивлениям материалов с учетом коэффициентов условий работы.
Общий случай расчета нормальных сечений
Основные предпосылки:
1. растянутый бетон в деформировании сечения не учитывается;
2. эпюра напряжений бетона в сжатой зоне принимается прямоугольной;
3. сжатая зона ограничена линией, параллельной нейтральной оси (нейтральному слою), но не совпадающей с ней;
4. рабочая высота сечения принимается для каждого арматурного слоя индивидуально;
5. распределение напряжения в арматуре осуществляется с использованием гипотезы плоских сечений;
6. соотношение между условной линией, ограничивающей сжатую зону, и фактическим нейтральным слоем учитывается коэффициентом полноты эпюры напряжений.
– определяется по формуле 26 СНиП 2.03.01-84* «Бетонные и железобетонные конструкции».
Высоту сжатой зоны для сечений, деформирующихся по случаю 1, когда в растянутой арматуре и сжатом бетоне достигнуты предельные сопротивления, определяют из уравнения равновесия:
)
При изгибе уравнение моментов запишется как
Распределение напряжений по высоте сечений происходит линейно:
предельная деформация в бетоне сжатой зоны
где предельная деформация в арматуре сжатой зоны.
При центральном сжатии принимают, что , тогда относительная высота сжатой зоны равна .
напряжение в i-ом стержне продольной арматуры:
, (8.9)
где предельное напряжение в арматуре сжатой зоны;
коэффициент отношения сопротивления арматуры в упругой зоне к общему сопротивлению арматуры.