Молекулярно-кинетической теории

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Молекулярная физика изучает круг явлений, объяснение которых может быть дано исходя из движения и взаимодействия молекул. Методом молекулярной физики является молекулярно-кинетическая теория, основные положения которой гласят:

1) вещества состоят из мельчайших частиц, атомов или молекул, которые находятся в непрерывном, хаотическом движении;

2) в любом, даже очень малом объеме, к которому еще можно применить выводы молекулярно-кинетической теории, число частиц очень велико;

3) размеры частиц малы по сравнению с расстояниями между ними;

4) соударения частиц между собой и со стенками сосуда являются абсолютно упругими;

5) при отсутствии внешних сил частицы распределяются по всему занятому объему равномерно;

6) по абсолютной величине скорости движения частиц могут изменяться от бесконечно малых до бесконечно больших.

Первая задача, которую мы рассмотрим, состоит в определении величины давления газа на стенки сосуда.

Основное уравнение молекулярно-Кинетической теории газа (уравнение Клаузиуса 1857г.)

молекулярно-кинетической теории - student2.ru Воспользуемся моделью идеального газа: размеры его молекул столь малы, что их суммарным объемом можно пренебречь по сравнению с объемом сосуда; подавляющую часть времени каждая молекула движется свободно и лишь иногда испытывает упругие столкновения с другими молекулами и стенками сосуда. При ударе о стенку молекула передает ей некоторый импульс силы – FmΔtm , численно равный изменению количества движения молекулы – Δ(mυ). Каждый элемент поверхности стенки ΔS непрерывно подвергается "бомбардировке" большим количеством молекул, что и создает силовое воздействие, т.е. давление, со стороны молекул на стенку, которое направлено по нормали к ней.

Выделим на стенке сосуда элементарную площадку ΔS (рис.1) и подсчитаем число соударений с ней за время Δt. Очевидно, оно равно числу молекул, которые за время Δt успеют долететь до элемента ΔS. Скорости молекул будут самыми различными как по величине, так и по направлению. Кроме того, они непрерывно меняются при каждом столкновении друг с другом. Однако, если при неизменных внешних условиях сумма их кинетических энергий - величина постоянная. Так что убывание скорости одной молекулы приводит к возрастанию скорости другой. Принимая во внимание огромное число таких процессов можно считать, что распределение скоростей по значениям постоянно.

молекулярно-кинетической теории - student2.ru Любое движение в пространстве можно рассматривать как движение вдоль трех взаимно перпендикулярных осей: OX, OY, OZ, независимо, как эта система сориентирована. В силу хаотичности вероятность движения молекул вдоль любого направления одинакова.

Тогда условно можно считать, что вдоль любой из осей движется 1/3 молекул, причем половина (т.е. 1/6 от общего числа) - в одну сторону, а вторая половина - в противоположную.

Применим эти рассуждения к прямому цилиндру, построенному на элементе ΔS как основании. Рассматривая движение в направлении нормали к ΔS как движение вдоль одной из осей координат (X, Y или Z), получим для числа частиц, имеющих скорость ui и достигших элемента стены ΔS за время Δt:

молекулярно-кинетической теории - student2.ru (1),

где ni - число молекул i-ого сорта в единице объема, т.е. таких, которые имеют скорость ui; ∆Ѕ∙υi∙∆t - объем той части цилиндра, в которой содержатся молекулы i-ого сорта, способные долететь до элемента ∆Ѕ за время ∆t. При соударении каждая такая молекула массой m изменяет свой импульс на величину

∆( mυi) = - mυi- mυi = -2 mυi (2).

Тогда, в соответствии с третьим законом Ньютона, стенка получает при единичном соударении импульс силы fi∙∆t = 2mυi , а суммарный импульс, переданный молекулами i-ого сорта элементу ∆Ѕ за время ∆t:

fi∙∆t = ∆ni ∙2mυi = молекулярно-кинетической теории - student2.ru ∙2mυi = молекулярно-кинетической теории - student2.ru (3).

Умножим и разделим правую часть равенства на 2:

fi∙∆t = молекулярно-кинетической теории - student2.ru niмолекулярно-кинетической теории - student2.ru ∙∆Ѕ∙∆t = молекулярно-кинетической теории - student2.ru (4),

т.к. молекулярно-кинетической теории - student2.ru - кинетическая энергия поступательного движения одной частицы, движущейся скоростью υi.

Полный импульс силы, переданный площадке ∆Ѕ за время ∆t всеми молекулами, будет представлять собой сумму выражений вида (4), записанных для частиц, двигающихся со скоростями υ1, υ2, … υi … υn :

f∆t = молекулярно-кинетической теории - student2.ru молекулярно-кинетической теории - student2.ru (5).

Разделив правую и левую часть (5) на ∆Ѕ∆t, получим:

молекулярно-кинетической теории - student2.ru (6).

молекулярно-кинетической теории - student2.ru - представляет собой суммарную кинетическую энергию молекул в единице объема, т.е. объемную плотность энергии поступательного движения. Обозначим молекулярно-кинетической теории - student2.ru =w. Теперь (6) примет вид:

p = молекулярно-кинетической теории - student2.ru w (7).

Это и есть основное уравнение МКТ, которое гласит: давление идеального газа равно 2/3 кинетической энергии поступательного движения частиц в единице объема.

Рассмотрим другие формы представления основного уравнения МКТ. Введем понятие о средней кинетической энергии молекулы идеального газа как молекулярно-кинетической теории - student2.ru . Тогда молекулярно-кинетической теории - student2.ru (8).

Здесь молекулярно-кинетической теории - student2.ru - называется средней кинетической скоростью частиц (следует иметь ввиду, что молекулярно-кинетической теории - student2.ru ). Теперь w = молекулярно-кинетической теории - student2.ru и (7) примет вид:

p = молекулярно-кинетической теории - student2.ru (9),

или с учетом (8):

молекулярно-кинетической теории - student2.ru (10).

Найдем взаимосвязь молекулярно-кинетической теории - student2.ru с макропараметрами идеального газа. Умножим (9) на молярный объем Vμ :

pVμ = молекулярно-кинетической теории - student2.ru (11).

Сопоставляя (11) с уравнением состояния для моля идеального газа - pVμ = RT, имеем RT = молекулярно-кинетической теории - student2.ru , что дает:

молекулярно-кинетической теории - student2.ru (12).

Здесь молекулярно-кинетической теории - student2.ru - постоянная Больцмана, k = 1,38∙10-23 Дж/К.

Формула (12) позволяет сделать очень важный вывод: абсолютная температура идеального газа прямо пропорциональна средней энергии поступательного движения частиц.

как оказывается, этот вывод справедлив не только для газов, но и для любых других агрегатных состояний вещества.

Подставим в (9) молекулярно-кинетической теории - student2.ru из (12), получим:

p = молекулярно-кинетической теории - student2.ru (13).

Откуда n = молекулярно-кинетической теории - student2.ru .

Для любого газа при одних и тех же значениях p и Т концентрация молекул одинакова. Например, при нормальных условиях n = 2,69∙1025 м-3 - число Лошмидта.

Для смеси газов можно представить (13) в виде

p = nkT = kT молекулярно-кинетической теории - student2.ru = n1kT + n2kT + n3kT + … nikT + … ,

но nikT = pi - это так называемое парциальное давление - давление, которое создавал бы газ i-ого сорта, если бы в сосуде был он один. T.o. давление смеси газов равно сумме парциальных давлений соответствующих компонентов

Р = Р1 + Р2 + Р3… = молекулярно-кинетической теории - student2.ru Рi (14) - закон Дальтона.

Получим выражение для молекулярно-кинетической теории - student2.ru через макропараметры идеального газа: Из (12) молекулярно-кинетической теории - student2.ru , тогда

молекулярно-кинетической теории - student2.ru ; молекулярно-кинетической теории - student2.ru (15).

Наши рекомендации