Марковские процессы

Марковские процессы, или процессы без последействия, являются удобной математической моделью для многих реальных процессов. Представим себе систему, которая может находится в различных состояниях, и пусть её функционирование во времени носит стохастический характер, то есть состояния системы в момент времени Марковские процессы - student2.ru в общем случае не определяется однозначно её состояниями в предыдущие моменты Марковские процессы - student2.ru . Следовательно процесс изменения во времени состояний этой системы можно описать некоторым случайным процессом Марковские процессы - student2.ru , заданным на интервале Марковские процессы - student2.ru и принимающим значения из множества Марковские процессы - student2.ru .

Пусть в моменты времени Марковские процессы - student2.ru заданы сечения Марковские процессы - student2.ru , Марковские процессы - student2.ru ,…, Марковские процессы - student2.ru случайного процесса Марковские процессы - student2.ru . Для момента времени Марковские процессы - student2.ru рассмотрим сечение Марковские процессы - student2.ru и условную функцию распределения

Марковские процессы - student2.ru .

Определение. Случайный процесс Марковские процессы - student2.ru называется марковским, если выполняется равенство

Марковские процессы - student2.ru ,

то есть его условная функция распределения вероятностей значений Марковские процессы - student2.ru в будущий момент времени Марковские процессы - student2.ru не зависит от значений процесса в прошлые моменты Марковские процессы - student2.ru , а определяется лишь значением Марковские процессы - student2.ru в настоящий момент времени Марковские процессы - student2.ru .

Условная функция распределения

Марковские процессы - student2.ru

называется марковской переходной функцией.

Все марковские процессы можно разделить на классы в зависимости от структуры множества Марковские процессы - student2.ru – значений случайного процесса Марковские процессы - student2.ru , и множества моментов времени наблюдения Марковские процессы - student2.ru . Если множество Марковские процессы - student2.ru – дискретное, то процесс Марковские процессы - student2.ru называется цепью Маркова.

При этом если Марковские процессы - student2.ru – дискретное, то процесс называется цепью Маркова с дискретным временем, а если Марковские процессы - student2.ru – непрерывное, то процесс называется цепью Маркова с непрерывным временем.

Если оба множества Марковские процессы - student2.ru и Марковские процессы - student2.ru непрерывные, то процесс называется непрерывным марковским процессом.

Наши рекомендации