Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам

Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным

Если модель регрессии является нелинейной по факторным переменным или нелинейной по оцениваемым коэффициентам, но внутренне линейной, то неизвестные коэффициенты данных моделей можно оценить с помощью классического метода наименьших квадратов.

Рассмотрим применение метода наименьших квадратов для определения неизвестных параметров модели регрессии, нелинейной по факторным переменным.

Параболическая функция второго порядка вида

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

является моделью регрессии, нелинейной по факторным переменным xi.

Метод наименьших квадратов позволяет получить такие оценки параметров β0,β1 и β2 при которых сумма квадратов отклонений фактических значений результативного признака ỹ от расчетных (теоретических) β минимальна:

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

В процессе минимизации исходной функции регрессии неизвестными являются только значения коэффициентов β0,β1 и β2, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции трёх переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений.

Составим стационарную систему уравнений для функционала F, не пользуясь методом замен:

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

После элементарных преобразований стационарной системы уравнений, получим систему нормальных уравнений, позволяющую определить значения неизвестных коэффициентов параболической функции:

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

Данная система является системой нормальных уравнений относительно параметров

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

для параболической функции второго порядка.

Полученная система нормальных уравнений является квадратной, т. к. количество уравнений равняется количеству неизвестных переменных, поэтому коэффициенты

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

можно рассчитать с помощью метода Крамера или метода Гаусса.

Если рассматривать полиномиальную функцию n-ой степени вида

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

то для определения оценок неизвестных коэффициентов данной модели регрессии методом наименьших квадратов минимизируется функционал F:

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

Для определения минимума функции нескольких переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений:

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

Решением данной стационарной системы уравнений будут оценки неизвестных коэффициентов полиномиальной функции n-ой степени.

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам

Показательная функция вида

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

является нелинейной по коэффициенту β1 и относится к классу моделей регрессии, которые можно с помощью преобразований привести к линейному виду. Данная модель характеризуется тем, что случайная ошибка εi мультипликативно связана с факторной переменной хi. Следовательно, для определения оценок неизвестных коэффициентов данной модели можно применить классический метод наименьших квадратов.

Данную модель можно привести к линейному виду с помощью логарифмирования:

Log yi=log β0+ хi* logβ1+ logεi.

Для более наглядного представления данной модели регрессии воспользуемся методом замен:

log yi=Yi;

log β0=A;

logβ1=B;

logεi=E.

В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:

Yi=A+Bхi+E.

Таким образом, мы будем применять метод наименьших квадратов не к исходной форме показательной функции, а к её преобразованной форме.

Для определения неизвестных коэффициентов линеаризованной формы показательной функции методом наименьших квадратов необходимо минимизировать сумму квадратов отклонений логарифмов наблюдаемых значений результативной переменной у от теоретических значений ỹ (значений, рассчитанных на основании модели регрессии), т. е. минимизировать функционал МНК вида:

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

Оценки неизвестных коэффициентов А и В линеаризованной формы показательной функции находятся при решении системы нормальных уравнений вида:

Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам - student2.ru

Данная система является системой нормальных уравнений относительно коэффициентов А и В для функции вида Yi=A+Bхi+E.

Однако основным недостатком полученных МНК-оценок неизвестных коэффициентов моделей регрессии, сводимых к линейному виду, является их смещённость.

Наши рекомендации