Задачи для подготовки к экзамену

1. Исследовать ряды на сходимость:

1) задачи для подготовки к экзамену - student2.ru ; 2) задачи для подготовки к экзамену - student2.ru ; 3) задачи для подготовки к экзамену - student2.ru ; 4) задачи для подготовки к экзамену - student2.ru ; 5) задачи для подготовки к экзамену - student2.ru ; 6) задачи для подготовки к экзамену - student2.ru ;

7) задачи для подготовки к экзамену - student2.ru ; 8) задачи для подготовки к экзамену - student2.ru ; 9) задачи для подготовки к экзамену - student2.ru ; 10) задачи для подготовки к экзамену - student2.ru ; 11) задачи для подготовки к экзамену - student2.ru ; 12) задачи для подготовки к экзамену - student2.ru .

2. Найти область сходимости степенного ряда:

1) задачи для подготовки к экзамену - student2.ru ; 2) задачи для подготовки к экзамену - student2.ru ; 3) задачи для подготовки к экзамену - student2.ru ; 4) задачи для подготовки к экзамену - student2.ru , 5) задачи для подготовки к экзамену - student2.ru

3. Радиус сходимости степенного ряда задачи для подготовки к экзамену - student2.ru равен 1. Тогда ряд сходится в интервале…

4. Найти разложение в ряд следующих интегралов:

1) задачи для подготовки к экзамену - student2.ru ; 2) задачи для подготовки к экзамену - student2.ru ; 3) задачи для подготовки к экзамену - student2.ru ; 4) задачи для подготовки к экзамену - student2.ru .

5. Вычислить:

1) задачи для подготовки к экзамену - student2.ru с точностью до 0,001; 3) задачи для подготовки к экзамену - student2.ru с точностью до 0,001;

2) задачи для подготовки к экзамену - student2.ru с точностью до 0,001; 4) задачи для подготовки к экзамену - student2.ru с точностью до 0,001.

6. Найти первые шесть членов разложения в ряд решения уравнения задачи для подготовки к экзамену - student2.ru , удовлетворяющего условиям задачи для подготовки к экзамену - student2.ru , задачи для подготовки к экзамену - student2.ru .

7. Найти три первых, отличных от нуля членов разложения в степенной ряд функции задачи для подготовки к экзамену - student2.ru , являющихся решением дифференциального уравнения задачи для подготовки к экзамену - student2.ru .

8. Периодическую функцию задачи для подготовки к экзамену - student2.ru с периодом задачи для подготовки к экзамену - student2.ru разложить в ряд Фурье.

9. Среди 25 студентов, из которых 15 девушек, разыгрываются 4 билета, причем каждый может выиграть только один билет. Какова вероятность того, что среди обладателей билетов окажутся: а) 4 девушки; б) 4 юноши; в)3 юноши и 1 девушка.

10. В коробке 10 красных, 3 синих, 7 желтых карандашей. Наудачу из коробки берут одновременно 3 карандаша. Найти вероятность того, что хотя бы два из них одного цвета.

11. Карточки с буквами слова АВТОПОРТРЕТ смешивают и выбирают по одной наудачу без возврата 4 карточки, раскладывая их в порядке появления. Определить вероятность того, что в результате получится слово ПОРТ.

12. Пассажир может прибыть к месту назначения любым из автобусов А, В и С, интервалы движения которых 1 час, 1,5 часа и 2 часа соответственно. Найти вероятность того, что время ожидания не превысит 0,8 часов.

13. Рабочий обслуживает три станка. Вероятность того, что в течение смены потребуют его внимания первый станок, равна 0,7, второй – 0,75, третий – 0,8. Найти вероятность того, что в течение смены потребуют внимания рабочего какие – либо два станка.

14. Оптовая база обслуживает 12 магазинов, от каждого из них заявка на товары на следующий день может поступить с вероятностью 0,3. Найдите наивероятнейшее число заявок на следующий день и вероятность получения базой такого числа заявок.

15. Фарфоровый завод отправил на базу 10000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0001. Найдите вероятность того, что на базу придут ровно 3 повреждённых изделия.

16. На факультете 730 студентов. Вероятность того, что студент не придет на занятия, равна 0,1. Найдите наивероятнейшее число студентов, не явившихся на занятия, и вероятность этого события.

17. Было посажено 400 деревьев. Вероятность того, что отдельное дерево приживется, равна 0,8. Найдите вероятность того, что число прижившихся деревьев больше 300.

18. Предполагается, что 10% открывающихся новых предприятий прекращают свою деятельность в течение года. Какова вероятность того, что из 6 малых предприятий не более двух в течение года прекратят свою деятельность?

19. Производится залп из 6 орудий по некоторому объекту. Вероятность попадания в объект из каждого орудия равна 0,6. Найти вероятность ликвидации объекта, если для этого необходимо не менее 4-х попаданий.

20. Вся продукция цеха проверяется двумя контролёрами, причём первый контролёр проверяет 55% изделий, а второй - остальные. Вероятность того, первый контролёр пропустит нестандартное изделие, равна 0,01, второй – 0,02. Взятое на удачу изделие оказалось нестандартным. Найти вероятность того, что это изделие проверялось вторым контролёром.

21. . Вероятность сбоя в работе телефонной станции равна 0,007. Поступило 1000 вызовов. Определить вероятность того что сбой произошел не менее 3 раз.

22. Одна из случайных величин задана законом распределения

хi -1
pi 0,1 0,8 0,1

А другая случайная величина имеет биноминальный закон распределения с параметрами n=2, p=0,6. Составить закон распределения их суммы и найти математическое ожидание этой случайной величины.

23. Случайные величины Х и У независимы и имеют один и тот же закон распределения:

значения
pi 0,2 0,3 0,5

Составить закон распределения случайных величин 2Х и Х+У. Убедиться в том, что 2Х задачи для подготовки к экзамену - student2.ru Х+У.

24. Охотник, имеющий 4 патрона, стреляет по дичи до первого попадания или до израсходования всех патронов. Вероятность попадания при первом выстреле равна 0,6, при каждом последующем - уменьшается на 0,1. Необходимо: 1) составить закон распределения случайной величины Х – числа патронов, израсходованных охотником; 2) найти математическое ожидание, дисперсию этой случайной величины.

25. Студент с целью поиска нужной ему книги решил обойти имеющиеся в городе 4 библиотеки. Предполагая, что вероятность наличия нужной студенту книги в библиотеке равна 0,4, составить закон распределения числа библиотек, которые посетит студент. Найти математическое ожидание и дисперсию этой случайной величины.

26. Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди 5 наудачу отобранных из общего числа. Найти математическое ожидание и дисперсию этой случайной величины.

27. Среди 7 изготовленных приборов имеется 3 недостаточно точных. Составить закон распределения случайной величины Х – числа не достаточно точных приборов среди взятых одновременно четырёх приборов. Найти функцию распределения этой случайной величины и построить её график.

28. Имеются 4 ключа, из которых только один подходит к замку. Составить закон распределения числа попыток открыть замок, если испробованный ключ в последующих попытках не участвует. Найти математическое ожидание, дисперсию и моду этой случайной величины.

29. Плотность распределения некоторой непрерывной случайной величины Х имеет вид:
f(x) = задачи для подготовки к экзамену - student2.ru .

Найти: a, F(x), M{x}, D{x}, Mo{x}, P(0<X<1). Построить графики f(x) и F(x).

30. Случайная величина Х задана функцией распределения

F(x) = задачи для подготовки к экзамену - student2.ru

Найти: f(x), M{x}, D{x}, Mo{x}, P(0,5<X<1). Построить графики f(x) и F(x).

31. Случайная величина задана функцией задачи для подготовки к экзамену - student2.ru Найти: М(x); D(x), P(3<x<4,5) , построить графики f(X) и F(X).

32. задачи для подготовки к экзамену - student2.ru Найти а, f(x), F(x), M(x) и Д(х), если плотность вероятности непрерывной случайной величины X имеет вид:

33. В таблице приведены результаты измерения роста (в см) случайно отобранных 100 студентов

Рост 154-158 158-162 162-166 166-170 170-174 174-178 178-182
Число студентов

Найти выборочную среднюю и выборочную дисперсию роста обследованных студентов. Найти исправленную выборочную дисперсию. Построить гистограмму относительных частот.

34. По выборке объема n=100 построена гистограмма частот:
задачи для подготовки к экзамену - student2.ru
Найти значение а

35. Случайная ошибки измерения детали подчинены нормальному закону с параметром задачи для подготовки к экзамену - student2.ru = 20 мм. Найти вероятность того, что измерение детали произведено с ошибкой, не превосходящей по модулю 25 мм.

36.

37. Произведена выборка объёмом n=100 из большой партии однотипных приборов. Средний срок службы прибора выборки оказался равным 5000 ч. Найти с надёжностью 0,95 доверительный интервал для среднего срока службы прибора во всей партии, если среднее квадратическое отклонение срока службы составляет 40 ч.

38. Найти минимальный объём выборки, при котором с надёжностью 0,975 точность оценки математического ожидания m генеральной совокупности по выборочной средней будет равна задачи для подготовки к экзамену - student2.ru , если известно среднеквадратическое отклонение задачи для подготовки к экзамену - student2.ru нормально распределённой генеральной совокупности.

Наши рекомендации