Погрешности измерений и их классификация
Виды измерений
В зависимости от вида функциональной связи между искомой и непосредственно измеряемой величинами и от способа получения числового значения измеряемой величины все измерения разделяются на: прямые, косвенные, совокупные и совместные.
Прямым называется измерение, при котором искомое значение величины находят непосредственно из опытных данных. Примерами прямых измерений являются измерение сопротивления омметром, измерение мощности ваттметром, измерение давления манометром и т. д.
Косвенным называется измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При этом числовое значение искомой величины определяется по формуле
Х = F (Y, Z, ... , W) ,
где X - значение искомой величины; Y,Z…W - значения непосредственно измеряемых величин.
Примеры косвенных измерений: определение значения активного сопротивления R резистора на основе прямых измерений силы тока I через резистор и падения напряжения U на нем по формуле R = U / I; определение плотности r тела цилиндрической формы на основе прямых измерений его массы m, диаметра d и высоты h цилиндра по формуле
r = 4m / pd2h и т. п.
Косвенные измерения сложнее прямых, однако они широко применяются в практике либо потому, что прямые измерения практически невыполнимы, либо потому, что косвенное измерение позволяет получить более точный результат по сравнению с прямым измерением.
К совокупным относятся производимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин. К совокупным относятся, например, измерения, при которых массы отдельных гирь набора находят по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь.
Совместные измерения - это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимости между ними.
Числовые значения искомых величин при совокупных и совместных измерениях определяются из системы уравнений, связывающих значения искомых величин со значениями величин, измеренных прямым (или косвенным) способом.
Чтобы получить числовые значения искомых величин, необходимо получить по крайней мере столько уравнений, сколько имеется этих величин, хоты в общем случае число прямых измерений может быть и больше минимально необходимого.
Методы измерений
Метод измерений - совокупность приемов использования принципов и средств измерений.
А).Метод непосредственной оценки заключается в определения значения физической величины по отсчетному устройству измерительного прибора прямого действия. Например – измерение напряжения вольтметром.Этот метод является наиболее распространенным, но его точность зависит от точности измерительного прибора.
Б).Метод сравнения с мерой – в этом случае измеряемая величина сравнивается с величиной, воспроизводимой мерой. Точность измерения может быть выше, чем точность непосредственной оценки.
Различают следующие разновидности метода сравнения с мерой:
Метод противопоставления, при котором измеряемая и воспроизводимая величина одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между величинами. Пример: измерение веса с помощью рычажных весов и набора гирь.
Дифференциальный метод, при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. При этом уравновешивание измеряемой величины известной производится не полностью. Пример: измерение напряжения постоянного тока с помощью дискретного делителя напряжения, источника образцового напряжения и вольтметра.
Нулевой метод, при котором результирующий эффект воздействия обеих величин на прибор сравнения доводят до нуля, что фиксируется высокочувствительным прибором – нуль-индикатором. Пример: измерение сопротивления резистора с помощью четырехплечевого моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.
Метод замещения, при котором производится поочередное подключение на вход прибора измеряемой величины и известной величины, и по двум показаниям прибора оценивается значение измеряемой величины, а затем подбором известной величины добиваются, чтобы оба показания совпали. При этом методе может быть достигнута высокая точность измерений при высокой точности меры известной величины и высокой чувствительности прибора. Пример: точное точное измерение малого напряжения при помощи высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.
Метод совпадения, при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Пример: измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по известной частоте вспышек и смещению метки определяют
Погрешности измерений и их классификация
Цель любых измерений - получение результата, то есть оценка истинного значения физической величины. Однако какими бы точными и совершенными ни были средства измерений и методы измерений, и как бы тщательно измерения ни выполнялись, их результат всегда отличается от истинного значения измеряемой физической величины, т.е. находится с некоторой погрешностью. Для оценки степени приближения к истинному значению используют положения теории вероятностей. Эта теория дает возможность оценивать вероятностные границы погрешностей, за пределы которых они не выходят.
Итак, погрешность измерений - это отклонение результата измерений от истинного значения измеряемой величины.
На практике используют понятие измеряемой величины. Существует такое понятие как погрешность средства измерения - разность между показаниями средства измерений и действий значением измеряемой величины. Эти два понятия близки друг к другу и обычно классифицируются по одинаковым признакам.
Погрешность - одна из основных характеристик результата измерения. Она должна быть обязательно оценена. Для различных видов измерения проблема оценки погрешности может решаться по-разному. Погрешность результата измерений можно оценить с разной точностью на основании различной исходной информации. В соответствии с этим различают измерения с точной, приближенной и предварительной оценкой погрешностей. Основные признаки, по которым классифицируются погрешности:
по форме количественного выражения:
абсолютная погрешность - отклонение результата x от xи - истинного (или хд - действительного) значения измеряемой величины
Разновидностью абсолютной погрешности является больше которой погрешность в эксперименте быть не может.
относительная погрешность - отношение абсолютной погрешности к хи (хд)
Дает возможность сравнивать качество, т.е. точность измерений). Часто выражается в % :
приведенная погрешность- потенциальная точность измерений,
по закономерности появления:
систематические погрешности Дс - составляющие погрешности, остающиеся постоянными или закономерно изменяющиеся при многократных измерениях одной и той же величины в одних и тех же условиях. Могут быть выявлены и уменьшены введением поправки или калибровкой полностью исключить не удается;
случайные погрешности До - составляющие погрешности измерений, изменяющиеся случайным образом по значению и знаку при повторных измерениях одной и той же физической величины в одних и тех же условиях. Неизбежны, неустранимы, всегда имеют место в результате измерения. Их описание и оценка возможны только на основе теории вероятности и математической статистики
Их можно уменьшить многократными измерениями и последующей статистической обработкой результатов.
грубые погрешности (промахи) - погрешности, существенно превышающие ожидаемые при данных условиях измерения. При многократных наблюдениях промахи выявляют и исключают из рассмотрения в соответствии с определенными правилами.
по виду источника погрешности:
методические - возникают из-за несовершенства метода измерений, некорректности алгоритмов или формул, по которым производятся вычисления, отличия принятой модели объекта измерений от верно описывающей его свойства, и вследствие влияния выбранного средства измерений на измеряемые параметры сигналов
инструментальные погрешности - возникают из-за несовершенства средств измерений, т.е. от их погрешностей (неточная градуировка, смещение нуля и пр.). Устраняется выбором более точного прибора.
внешняя погрешность - связана с отклонением влияющих величин от нормальных значений (влияние влажности, температура, электромагнитных полей и пр.). Этот вид погрешности можно отнести к систематическим и дополнительным погрешностям средств измерения.
субъективная погрешность - вызвана ошибками оператора при отчете показаний. Устраняется применением цифровых средств измерений или автоматических методов измерения.
по характеру поведения измеряемой величины в процессе измерений:
статические - возникают при измерении установившегося значения измеряемой величины
динамические - возникают при динамических измерениях. Причина - несоответствия временных характеристик прибора и скорости изменения измеряемой величины.
по условиям эксплуатации средства измерения:
основная погрешность - имеет место при нормальных условиях эксплуатации, оговоренных в паспорте или технических условиях средств измерения
дополнительная погрешность - возникает из-за выхода какой-либо из влияющих величин за пределы нормальной области значений.