Уравнения, допускающие понижение порядка
Понижение порядка дифференциального уравнения – основной метод решения уравнений высших порядков. Этот метод дает возможность сравнительно легко находить решение, однако, он применим далеко не ко всем уравнениям. Рассмотрим случаи, когда возможно понижение порядка.
Уравнения вида y(n) = f(x).
Если f(x) – функция непрерывная на некотором промежутке a < x < b, то решение может быть найдено последовательным интегрированием.
9.Линейные дифференциальные уравнения второго порядка |
Дифференциальное уравнение второго порядка имеет вид . Определение. Общим решением уравнения второго порядка называется такая функция , которая при любых значениях и является решением этого уравнения. Определение. Линейным однородным уравнением второго порядка называется уравнение . Если коэффициенты и постоянны, т.е. не зависят от , то это уравнение называют уравнением с постоянными коэффициентами и записывают его так: . Уравнение будем называть линейным неоднородным уравнением. Определение.Уравнение , которое получается из линейного однородного уравнения заменой функции единицей, а и - соответствующими степенями , называется характеристическим уравнением. Известно, что квадратное уравнение имеет решение, зависящее от дискриминанта : , т.е. если , то корни и - действительные различные числа. Если , то . Если же , т.е. , то будет мнимым числом, а корни и - комплексными числами. В этом случае условимся обозначать . |