Представление синусоидальных величин тригонометрическими функциями, графиками изменений во времени. Получение синусоидальной ЭДС

Тригонометрической

U = U·(cosψu + jsinψu)

I = I·(cosψi – jsinψi).

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1).

i(t) = Im sin(ωt - ψi).

Представление синусоидальных величин тригонометрическими функциями, графиками изменений во времени. Получение синусоидальной ЭДС - student2.ru

Действующий ток является эквивалентом постоянного тока, который за одно и то же время выделяет в резисторе такое же количество тепла, как и переменный ток. Действующее значение связано с амплитудным простым соотношением

Представление синусоидальных величин тригонометрическими функциями, графиками изменений во времени. Получение синусоидальной ЭДС - student2.ru

Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по синусоидальному закону, называются цепями синусоидального тока. Иногда их называют просто цепями переменного тока.

Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по законам, отличным от синусоидального, называются цепями несинусоидального тока.

Генераторы электрических станций переменного тока устроены так, что возникающая в их обмотках ЭДС изменяется по синусоидальному закону. Синусоидальная ЭДС в линейных цепях, где содержатся резистивные, индуктивные и емкостные элементы, возбуждает ток, изменяющийся по закону синуса.

Возникающие при этом ЭДС самоиндукции в катушках и напряжения на конденсаторах, как это вытекает из выражений

е = - L di , i = C duc ,
dt dt

также изменяются по синусоидальному закону, так как производная синусоидальной функции есть функция синусоидальная. Напряжение на резистивном элементе будет также изменяться по синусоидальному закону, так как

и = ir.

Целесообразность технического использования синусоидального тока обусловлена тем, что КПД генераторов, двигателей, трансформаторов и линий электропередачи при синусоидальной форме ЭДС, напряжения и тока получается наивысшим по сравнению с несинусоидальным током. Кроме того, при иных формах изменения тока из-за ЭДС самоиндукции могут возникать значительные перенапряжения на отдельных участках цепи. Важную роль играет и тот факт, что расчет цепей, где ЭДС, напряжение и ток изменяются синусоидально, значительно проще, чем расчет цепей, где указанные величины изменяются по несинусоидальному закону.

Рассмотрим механизм возникновения и основные соотношения, характерные для синусоидальной ЭДС. Для этого удобно использовать простейшую модель — рамку, вращающуюся с постоянной угловой скоростью ω в равномерном магнитном поле (рис. 2.1, а). Проводники рамки, перемещаясь в магнитном поле, пересекают его, и в них на основании закона электромагнитной индукции наводится ЭДС. Значение ЭДС пропорционально магнитной индукции В, длине проводника l и скорости перемещения проводника относительно поля vt:

е = Blvt .

Выразив скорость vt через окружающую скорость v и угол α, получим

е = Blv sin α = Еm sin α.

Угол α равен произведению угловой скорости рамки ω на время t:

α = ωt..

Таким образом, ЭДС, возникающая в рамке, будет равна

(2.1)

е = Ет sin α = Em sin ωt.

11.Электрические устройства переменного тока: источники ЭДС, резисторы.

Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника.

Переменным называется такой ток, который изменяется по направлению и по величине.

Наши рекомендации