Изменение начала координат и поворот осей

ПП 7.3. Преобразования координат

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ФОРМУЛЫ

Преобразования координат

Параллельный перенос

Изменение начала координат и поворот осей - student2.ru Перенесём начало координат из точки О в точку О1 параллельным переносом осей. Пусть в системе ко­ординат xoy точка М имеет координаты x и y. Система координат x¢O1y¢ получена из системы координат xOy параллельным переносом осей, при котором начало координат О1 имеет координаты x0 и y0 в системе координат xOy. Точка М в системе координат x¢O1y¢ имеет координаты x¢ и y¢. Связь между координатами точки M(x,y) и точки M(x¢,y¢) в старой и новой системах координат задается формулами:

Изменение начала координат и поворот осей - student2.ru (1)

Изменение начала координат и поворот осей - student2.ru (2)

Изменение начала координат и поворот осей - student2.ru Уравнения кривых второго порядка, когда их центры симметрии находятся в точке с координатами O1(x0,y0), получаются с помощью преобразования координат при параллельном переносе осей (2).

Изменение начала координат и поворот осей - student2.ru - уравнение окружности с центром в точке O1(x0,y0) и радиусом R.

Аналогично получаются уравнения других кривых второго порядка:

Изменение начала координат и поворот осей - student2.ru - уравнения эллипса и гиперболы с цен­тром симметрии в точке O1(x0,y0);

Изменение начала координат и поворот осей - student2.ru - уравнение параболы с вершиной в точке O1(x0,y0).

При этом, например, уравнения директрис эллипса и гиперболы: Изменение начала координат и поворот осей - student2.ru , а параболы: Изменение начала координат и поворот осей - student2.ru . Аналогично преобразуются и уравнения асимптот гиперболы: Изменение начала координат и поворот осей - student2.ru .

Поворот координатных осей

Выведем формулу преобразования координат при повороте координатных осей.

Повернём оси координат на угол a относительно исходной системы координат. Координаты точки М в системе координат x¢Oy¢ равны x¢ и y¢. Найдём её координаты в системе координат xOy. В треугольнике CMD Изменение начала координат и поворот осей - student2.ru , OD = x¢, MD = y¢.

Следовательно,

x = OA = OB – AB = OB - CD, y = MA = AC + CM = DB + CM.

Поскольку

Изменение начала координат и поворот осей - student2.ru

то

Изменение начала координат и поворот осей - student2.ru (3)

Эти формулы выражают старые координаты (x,y) произвольной точки М через новые координаты (x¢,y¢) этой же точки при повороте осей на угол a.

Формулы, выражающие новые координаты (x¢,y¢) точки М через её старые координаты (x,y), получим из следующих соображений: если новая система получена поворотом старой на угол a, то старая система получается поворотом новой на угол (-a), поэтому в равенствах (3) можно поменять местами старые и новые координаты, заменяя одновременно a на (-a).

Выполнив это преобразование, получим

Изменение начала координат и поворот осей - student2.ru

При этом, например, уравнения директрис эллипса (ги­перболы) и параболы принимают вид:

Изменение начала координат и поворот осей - student2.ru

Изменение начала координат и поворот осей

Если оси декартовой прямоугольной системы переносятся параллельно на величины x0 по оси ox и на y0 по оси oy и, кроме того, поворачиваются на угол a, то этому изменению системы соответствуют формулы преобразования координат, выражающие старые координаты через новые:

Изменение начала координат и поворот осей - student2.ru (4)

и новые координаты через старые:

Изменение начала координат и поворот осей - student2.ru (5)

Наши рекомендации