Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2

34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2.

Решение. По формуле Остроградского-Гаусса имеем:

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru ,

где G – шар (x–a)2+(y-b)2+(z–c)2£R2. Для вычисления интеграла перейдем к сферическим координатам:

x=a+rcosjsinq, y=b+rsinjsinq, z=c+rcosq, 0 £ j £ 2p, 0 £ q £ p.

Якобиан перехода равен r2sinq. Уравнение границы области G имеет вид r = R. Следовательно, Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Ответ: Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Пусть задана ориентированная поверхность (Ф), т.е. такая поверхность, в каждой точке которой выбран единичный вектор Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru , меняющийся на поверхности непрерывно. В случае замкнутой поверхности в качестве Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru будем всегда выбирать вектор внешней нормали.

Потоком П векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru через ориентированную поверхность (Ф) называют поверхностный интеграл (первого рода): Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Дивергенция (расходимость) векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru может быть определена выражением: Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru , т.е. дивергенция векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru представляет собой скалярное поле в области G.

Если Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru – разложение векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru , то формулу, определяющую поток, можно записать в виде:

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru ,

либо записать в форме поверхностного интеграла (второго рода):

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Теперь теорему Остроградского-Гаусса можно сформулировать следующим образом: поток векторного поля через замкнутую поверхность равен тройному интегралу от дивергенции векторного поля по объему, ограниченному этой поверхностью.

35. Найти поток векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru через замкнутую поверхность (Ф), состоящую из поверхности конуса x2+y2=z2 и плоскости z=1. См. рис 3.

Решение. Имеем Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru Следовательно, Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru , где V–объем конуса.

Так как Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru . Ответ: p/3.

36. Найти поток векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru через поверхность сферы x2+y2+z2=R2.

Решение. В данном случае поверхность (Ф) – замкнутая, поэтому для вычисления потока можно применить формулу Гаусса - Остроградского. Имеем

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Рис. 3.

Вычисляем интеграл в сферических координатах:

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru

37. Найти поток векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru через часть поверхности параболоида 1 – z = x2+y2 (0 £ z £ 1). См. рис. 4.

Решение. Обозначим данную поверхность через (Ф1) и рассмотрим замкнутую поверхность Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru , где (Ф2) – круг радиуса R=1 на плоскости XOY. Из формулы Гаусса - Остроградского вытекает, что поток через поверхность (Ф) равен нулю. Действительно, для данного поля

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Рис. 4

Следовательно, Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru . Отсюда искомый поток через поверхность (Ф1):

Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Ответ: p.

38. Пользуясь формулой Остроградского-Гаусса, вычислить поток векторного поля Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru

через полную поверхность конуса Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Решение. Найдем дивергенцию векторного поля: Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru . Тогда Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2 - student2.ru .

Наши рекомендации