Распространение выборочных результатов на генеральную совокупность

Пределы для генеральных характеристик (доверительные интервалы) определяются на основе показателей, полученных по данным выборки. Доверительный интервал для генеральной средней:

Распространение выборочных результатов на генеральную совокупность - student2.ru ;

Распространение выборочных результатов на генеральную совокупность - student2.ru .

Доверительный интервал для генеральной доли:

Распространение выборочных результатов на генеральную совокупность - student2.ru ;

Распространение выборочных результатов на генеральную совокупность - student2.ru .

Определение необходимого объёма выборки

При проектировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки очень важно правильно определить численность (объём) выборочной совокупности, который с определённой вероятностью обеспечит заданную точность результатов наблюдения.

Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, при собственно-случайном способе отбора необходимая численность выборки составит:

Численность выборки (n) Способ отбора единиц
повторный Бесповторный
Для средней Распространение выборочных результатов на генеральную совокупность - student2.ru Распространение выборочных результатов на генеральную совокупность - student2.ru
Для доли Распространение выборочных результатов на генеральную совокупность - student2.ru Распространение выборочных результатов на генеральную совокупность - student2.ru

Эти формулы показывают, что с увеличением предполагаемой ошибки выборки значительно уменьшается её необходимый объём.

Решение типовых задач

Пример 4.1.

В городе было проведено выборочное обследование 1% граждан (случайный, повторный отбор) с целью изучения их доходов в ноябре.

Месячный доход, руб. 1200 – 4200 4200 – 7200 7200 – 10 200 10 200 и более
Число обследованных

Определим:

1) среднемесячный доход у жителя города в ноябре, гарантируя результат с вероятностью 0,997;

2) долю жителей города с доходом 7 200 руб. и выше, гарантируя результат с вероятностью 0,954;

3) необходимую численность выборки при определении среднемесячного дохода, чтобы с вероятностью 0,997 предельная ошибка выборки не превышала 300 руб.;

4) необходимую численность выборки при определении доли жителей с доходом более 7 200 руб. и выше, чтобы с вероятностью 0,954 предельная ошибка не превышала 5%;

5) предельную относительную ошибку для выборочной средней и выборочной доли.

Решение

I. Среднее значение признака в выборке:

Распространение выборочных результатов на генеральную совокупность - student2.ru

Дисперсия выборочной средней:

Распространение выборочных результатов на генеральную совокупность - student2.ru

Предельная ошибка при вероятности 0,997 (коэффициент доверия 3):

Распространение выборочных результатов на генеральную совокупность - student2.ru

Доверительный интервал:

Распространение выборочных результатов на генеральную совокупность - student2.ru

Распространение выборочных результатов на генеральную совокупность - student2.ru

Таким образом, с вероятностью 0,997 можно утверждать, что средний доход жителей города в ноябре будет находиться в пределах от 6 509 до 6 991 руб.

2. Доля жителей города с доходом выше 7 200 руб. по данным выборочного наблюдения:

Распространение выборочных результатов на генеральную совокупность - student2.ru .

Предельная ошибка при вероятности 0,954 (коэффициент доверия 2):

Распространение выборочных результатов на генеральную совокупность - student2.ru .

Доверительный интервал:

Распространение выборочных результатов на генеральную совокупность - student2.ru ;

Распространение выборочных результатов на генеральную совокупность - student2.ru ;

Распространение выборочных результатов на генеральную совокупность - student2.ru .

Таким образом, с вероятностью 0,954 можно утверждать, что в генеральной совокупности число жителей, имеющих доход свыше 7 200 руб., находится в пределах от 38,2 до 43,8%.

3. Для определения необходимой численности выборки при определении среднемесячного дохода с вероятностью 0,997 (коэффициент доверия) и предельной ошибкой не более 300 руб. воспользуемся формулой для расчёта предельной ошибки для средней при повторном отборе:

Распространение выборочных результатов на генеральную совокупность - student2.ru

Таким образом, чтобы с вероятностью 0,997 ошибка выборки не превышала 300 руб., численность выборки должна составлять 775 человек.

4. Для определения необходимой численности выборки при определении доли жителей города с доходом более 7 200 руб. с вероятностью 0,954 (коэффициент доверия 2) и предельной ошибкой, не превышающего 5 %, воспользуемся формулой для расчёта предельной ошибки для доли при повторном отборе:

Распространение выборочных результатов на генеральную совокупность - student2.ru

Таким образом, чтобы с вероятностью 0,954 ошибка выборки не превышала 5%, численность выборки должна составлять 387 человек.

5. Предельная относительная ошибка выборки определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

для средней: Распространение выборочных результатов на генеральную совокупность - student2.ru

для доли: Распространение выборочных результатов на генеральную совокупность - student2.ru

Наши рекомендации