Экспоненциальное распределение.

Экспоненциальное распределение является непрерывным распределением и является приближением геометрического распределения, т.к. при стремлении такта к 0 геометрическое распределение стремиться к экспоненциальному.

Определение: Экспоненциальное распределение. - student2.ru - вероятность того, что выполнение команды завершится к моменту времени t.

Для экспоненциального закона распределения Экспоненциальное распределение. - student2.ru .

           
  Экспоненциальное распределение. - student2.ru   Экспоненциальное распределение. - student2.ru
 
   
t

Дополнении к функции распределения: Экспоненциальное распределение. - student2.ru - вероятность того, что выполнении команды не закончиться к моменту t.

Плотность вероятности: Экспоненциальное распределение. - student2.ru

ДЗ. Просмотреть свойства экспоненциального закона распределения. Математическое ожидание, дисперсия, первый и второй моменты.

Рассмотрим такую модель:

 
  Экспоненциальное распределение. - student2.ru

Поскольку время выполнения команды не зависит от того сколько данная команда выполнялась до этого нет необходимости вводить параметр, который будет содержать информацию о том сколько времени уже выполняется команда в процессоре, или в памяти, или одновременно и там и там, следовательно достаточно указать сколько находиться команд в системе (от 0 до n+1). Рассмотрим состоянии системы в некоторый момент времени t. Введем Рi(t) - вероятность того, что в момент наблюдения t в системе находится ровно i команд. При i=0,1,...,n+1 ОП не может быть заблокировано. Введем n+2 состояние и будем считать, что в этом состоянии ОП заблокировано.

Найдем Рi(t). Для этого рассмотрим малый интервал времени Dt и пусть в момент t+Dt система находиться в состоянии i. Найдем вероятность Pi(t+Dt) для всех значениях i. В момент времени t система могла находиться в любом состоянии. Посмотрим как можно из состояния системы в момент времени t попасть в состояние i в момент времени t+Dt.

1) 0<i<n+2

Экспоненциальное распределение. - student2.ru вероятность того, что ни ОП, ни ЦП не завершит обработку команды или оба устройства выполнят одно и тоже число команд.

Определим вероятность того, что за Dt ни ОП, ни ЦП не завершит обработку команды:

Экспоненциальное распределение. - student2.ru ДЗ. Разложение ех.

Символ О(Dt) означает величины, для которых справедливо O(Dt )/ Dt ®0 при Dt®¥. Вероятность того, что за Dt устройствами будет выполнено ровно по к команд равняется О(Dt).

Действительно: Экспоненциальное распределение. - student2.ru .

Поэтому:

Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru + Экспоненциальное распределение. - student2.ru вероятность того, что за время Dt 1) ЦП выполнит 1 команду, а ОП - 0 команд, либо 2) ЦП выполнит на 1 команду больше чем ОП.

Определим вероятность первого события: Экспоненциальное распределение. - student2.ru .

Вероятность второго события равна О(Dt). Следовательно:

Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru + Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru

Экспоненциальное распределение. - student2.ru вероятность того, что 1) ЦП выполнит 2 команды, а ОП ни одной, либо 2) ЦП выполнит на 2 команды больше, чем в ОП.

Определим вероятность первого события: Экспоненциальное распределение. - student2.ru .

Вероятность второго события равна О(Dt). Отсюда вероятность попадания в состояние i из состояния i+2 равна О(Dt), аналогично и из состояния i-2. Следовательно и из состояний i±3, i±4,...,i±k вероятность попадания в состояние i равна О(Dt).

Мы получили формулу полной вероятности того, что система окажется в момент времени t+Dt в состоянии i (0<i<n+2):

Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru + Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru

Экспоненциальное распределение. - student2.ru

( возьмем предел каждой части равенства при Dt®¥) Экспоненциальное распределение. - student2.ru

Экспоненциальное распределение. - student2.ru

Лекция №8

Мы получили систему дифференциальных уравнений первого порядка:

Экспоненциальное распределение. - student2.ru (1)

Экспоненциальное распределение. - student2.ru (2)

Экспоненциальное распределение. - student2.ru (3)

Одно из этих уравнений необходимо отбросить и добавить уравнение нормировки:

Экспоненциальное распределение. - student2.ru

Эта система уравнений позволяет описать переходный процесс во времени. Для этого нужно задать состояние системы в нулевой момент времени. Пусть Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru

Изменить

Если наблюдать за системой достаточно долго, то можно говорить о некотором стационарном поведении системы. Решается эта система достаточно сложно. Стационарные характеристики такой системы получаются достаточно легко: Экспоненциальное распределение. - student2.ru для n<¥ этот предел всегда существует, если же n®¥, то предел не всегда существует. Пусть Экспоненциальное распределение. - student2.ru , тогда взяв предел от левой и правой части каждого уравнения системы получим:

Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru Экспоненциальное распределение. - student2.ru

Следовательно:

Экспоненциальное распределение. - student2.ru (1*)

Экспоненциальное распределение. - student2.ru (2*)

Экспоненциальное распределение. - student2.ru (3*)

Решим получившуюся систему уравнений. Из (3*) => Экспоненциальное распределение. - student2.ru . Решаем (1*) и (3*) при i=1:

Экспоненциальное распределение. - student2.ru

Отсюда следует:

Экспоненциальное распределение. - student2.ru

ДЗ. Пусть l=m. Чему равняется вероятность пребывания в том либо в другом состоянии ? Чему равно среднее время выполнения команды этой системой.

Пусть n=¥. Чему равны Рi при 1) l=m 2) l<m 3) l>m ? Чему равно среднее число команд в системе при n<¥ ?

Вложенные цепи Маркова.

Наши рекомендации