Схема I. Консольная балка (задача №6)

Учитывая особенности рассматриваемой системы (рис. 5.8, а), чтобы исключить необходимость определения опорных реакций, достаточно применяя метод сечений, последовательно рассмотреть те отсеченные части системы от заданного сечения, в котором отсутствует опорное сечение.

1. Построить эпюры Qy и Mx . Для построения эпюр Qy и Mx определяем количество участков, затем, используя метод сечений, составляем аналитические выражения изменения Qy и Mx в зависимости от текущей абсциссы z для каждого участка.

Схема I. Консольная балка (задача №6) - student2.ru

Рис. 5.8

Определение количества участков балки

Границами между двумя смежными участками, как правило, являются места расположения тех сечений, где происходит скачкообразное изменение: физико-механических характеристик материала конструкций; геометрических характеристик поперечных сечений (формы и/или размеров), а также внешних нагрузок. В данном случае, рассматриваемая балка, имеющая постоянное поперечное сечение (рис. 5.8, б) имеет три участка: участок I - DС, участок II - СВ, участок III - ВА.

Составление аналитических выражений Qy и Mx и определение значений в характерных сечениях

Проведя сечение I-I, рассмотрим равновесие правой отсечен­ной части балки длиной z1, приложив к ней все действующие спра­ва от сечения заданные нагрузки и внутренние силовые факторы Qy и Mx , возникающие в сечении, которые заменяют действие от­брошенной части балки (рис. 5.9). При этом, предполагаем, что изображенные на рисунке внутренние силовые факторы положи­тельны.

Составив уравнения равновесия Sy = 0 и Схема I. Консольная балка (задача №6) - student2.ru = 0 для этой части балки и решив их, найдем выражения для Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru в зави­симости от z1 на участке I (0 £ z1 £ 1 м):

Схема I. Консольная балка (задача №6) - student2.ru Sy = 0, Схема I. Консольная балка (задача №6) - student2.ru = 0;

Схема I. Консольная балка (задача №6) - student2.ru , Схема I. Консольная балка (задача №6) - student2.ru + m = 0, Схема I. Консольная балка (задача №6) - student2.ru = -m = -10 кН×м.

Полученные выражения показывают, что на участке I Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru - const. Знак “минус” у Схема I. Консольная балка (задача №6) - student2.ru говорит о том, что момент в сече­нии I-I вызывает растяжение верхних, а не нижних волокон, как это показано на рис. 5.9.

Схема I. Консольная балка (задача №6) - student2.ru

Участок II (1 м £ z2 £ 2 м).

Составим уравнения Sy = 0 и Схема I. Консольная балка (задача №6) - student2.ru для отсеченной сече­нием II-II правой части балки (рис. 5.10) и определим из них Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru :

Sy = 0, Схема I. Консольная балка (задача №6) - student2.ru кН;

Схема I. Консольная балка (задача №6) - student2.ru , Схема I. Консольная балка (задача №6) - student2.ru + m - P (z2 - 1) = 0, Схема I. Консольная балка (задача №6) - student2.ru = -m + P (z2 - 1) .

Из полученных выражений для Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru видно, что на уча­стке II величина Схема I. Консольная балка (задача №6) - student2.ru постоянна, а величина Схема I. Консольная балка (задача №6) - student2.ru изменяется в за­висимости от z2 по закону прямой линии. Знак “минус” у Схема I. Консольная балка (задача №6) - student2.ru показывает, что в сечении II-II возникает поперечная сила, дейст­вующая в направлении, обратном показанному на рис. 5.10.

Теперь, подставляя значения z2 для характерных сечений участ­ка II в полученные аналитические выражения, определим величи­ны Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru , возникающие в этих сечениях, т.е. ординаты эпюр Mx и Qy в точках С и В (рис. 5.8, б).

при z2 = 1 м; Схема I. Консольная балка (задача №6) - student2.ru = -30 кН; Схема I. Консольная балка (задача №6) - student2.ru = -10 + 30 (1 - 1) = -10 кН×м;

при z2 = 2 м; Схема I. Консольная балка (задача №6) - student2.ru = -30 кН; Схема I. Консольная балка (задача №6) - student2.ru = -10 + 30 (2 - 1) = 20 кН×м.

Участок III (2 м £ z2 £ 4 м).

Составим уравнения равновесия Sy = 0 и Схема I. Консольная балка (задача №6) - student2.ru для отсе­ченной сечением III-III правой части балки (рис. 5.11) и, решив их, получим,

Sy = 0, Схема I. Консольная балка (задача №6) - student2.ru ;

Схема I. Консольная балка (задача №6) - student2.ru , Схема I. Консольная балка (задача №6) - student2.ru + m - P (z3 - 1) + 0,5 q (z2 - 2)2 = 0,

Схема I. Консольная балка (задача №6) - student2.ru = -m + P (z3 - 1) - 0,5 q (z2 - 2)2 .

Таким образом, вели­чина Схема I. Консольная балка (задача №6) - student2.ru на участке III изменяется по закону прямой линии, а вели­чина Схема I. Консольная балка (задача №6) - student2.ru - по закону квадратной параболы.

Схема I. Консольная балка (задача №6) - student2.ru Рис. 5.11

Подставив значения z3 , соответствующие харак­терным сечениям участ­ка, в аналитические вы­ражения изменения Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru , определим координаты эпюр для сечений В и А (рис. 5.8, б).

При z3 = 2 м Схема I. Консольная балка (задача №6) - student2.ru = -30 + 20×(2 - 2) = - 30 кН;

Схема I. Консольная балка (задача №6) - student2.ru = -10 + 30 (2 - 1) - 0,5×20×(2 - 2)2 = 20 кН×м.

При z3 = 4 м Схема I. Консольная балка (задача №6) - student2.ru = -30 + 20×(4 - 2) = 10 кН;

Схема I. Консольная балка (задача №6) - student2.ru = -10 + 30 (4 - 1) - 0,5×20×(4 - 2)2 = 40 кН×м.

Так как, поперечная сила в пределах участка меняет знак, т.е. имеет промежуточное нулевое значение (рис. 5.8, в), то в этом се­чении возникает экстремальное значение изгибающего момента. Для определения его величины вначале найдем значение z0 , при котором Схема I. Консольная балка (задача №6) - student2.ru = 0. Для этого, приравняв выражение для Схема I. Консольная балка (задача №6) - student2.ru нулю, получим:

-P + q (z0 - 2) = 0, Схема I. Консольная балка (задача №6) - student2.ru м.

Подставив найденное значение z0 = 3,5 м в аналитическое вы­ражение изменения Схема I. Консольная балка (задача №6) - student2.ru , вычислим величину Mmax:

Схема I. Консольная балка (задача №6) - student2.ru кН×м.

Построение эпюр Qy и Mx для всей балки

Отложив перпендикулярно к оси абсцисс (линии, параллельной оси балки) в удобном для пользования масштабе вычисленные зна­чения Qy и Mx в характерных и промежуточных сечениях каждого участка и соединяя концы полученных ординат линиями, соответ­ствующими законам изменения Qy и Mx на каждом участке, по­строим эпюры Qy и Mx для всей балки (рис. 5.8, в, г). При этом положительные ординаты эпюры Qy откладываются вверх, а отри­цательные - вниз по оси абсцисс. Ординаты же эпюр Mx отклады­ваются со стороны растянутого волокна. На эпюрах Qy обязательно указываются знаки, а на эпюре Mx знаки можно не ставить.

Проверка правильности построения эпюр Qy и Mx

Схема I. Консольная балка (задача №6) - student2.ru Рис. 5.12

Для этого необходимо вначале проверить соответствие эпюры Qy эпюре Mx согласно дифференциальной зависимости Схема I. Консольная балка (задача №6) - student2.ru , из которой следует, что эпюра Qy представляет собой эпюру тангенсов угла наклона касательных эпюры Mx к оси балки. В самом деле, на участке II балки (рис. 5.8, г) тангенс угла наклона касательной эпюры Mx к оси балки (рис. 5.12) равен:

Схема I. Консольная балка (задача №6) - student2.ru кН.

При этом, знак поперечной силы будет положительным, если угол образован вращением оси балки или элемента системы по хо­ду часовой стрелки, и отрицательным, если угол образован враще­нием этой оси против часовой стрелки до совмещения с эпюрой Mx .

В рассматриваемом примере угол a образован вращением оси балки против часовой стрелки, поэтому поперечная сила на этом участке будет отрицательной. После указанной проверки полезно также проверить выполнение следующих положений:

1. Эпюра Mx на участке между сосредоточенными силами, а также между сосредоточенными силой и моментом, и между нача­лом или концом действия равномерно распределенной нагрузки и сосредоточенными силой и моментом всегда изменяется по закону прямой линии, наклонной к оси элемента, а в пределах действия равномерно распределенной нагрузки по закону квадратной пара­болы, имеющей выпуклость в сторону ее действия, если эпюра построена со стороны растянутого волокна;

2. Под точкой приложения сосредоточенной силы эпюра Mx имеет излом, острие которого направлено в сторону действия силы, если эпюра построена со стороны растянутого волокна;

3. На эпюре Mx в месте действия сосредоточенного момента m имеет место скачок, равный его величине;

4. Над шарнирными опорами двухшарнирной балки изгибаю­щий момент может быть только в тех случаях, когда в опорных се­чениях приложены сосредоточенные моменты или когда на консо­лях, расположенных за опорами, приложены нагрузки. Во всех других случаях изгибающие моменты в шарнирах равны нулю;

5. На участке действия равномерно распределенной нагрузки изгибающий момент достигает экстремального значения Mx =
= Mmax в том сечении, где поперечная сила Схема I. Консольная балка (задача №6) - student2.ru , т.е. пере­ходит через нуль, меняя знак;

6. Поперечная сила Qy на участке равна нулю, если во всех се­чениях по длине этого участка Mx = const;

7. Эпюра Qy постоянна на участках между сосредоточенными нагрузками и изменяется по закону наклонной прямой лишь на участках, где действует равномерно распределенная нагрузка;

8. Эпюра Qy в точках приложения сосредоточенных вертикаль­ных сил (Р, RA , RB) имеет скачки, равные по величине приложен­ным в этих сечениях сосредоточенным силам, причем направление скачков всегда совпадает с направлением этих сил.

В нашем примере все эти положения выполняются.

2.1. Руководствуясь эпюрой Mx, показать приблизи­тельный вид изогнутой оси балки. При построении при­близительного вида изогнутой оси балки по эпюре Mx необходимо знать, что знак изгибающего момента связан с характером дефор­мации балки от действия заданной внешней нагрузки. Если на участке балки изгибающий момент положителен, то балка на этом участке изгибается выпуклостью вниз, а если отрицателен - выпук­лостью вверх. В тех же сечениях, где изгибающий момент равен нулю, кривизна балки меняет свой знак, т.е. ось балки в этих сече­ниях имеет точки перегиба. При этом всегда следует помнить, что прогибы балки на опорах равны нулю.

Анализируя эпюру Mx (рис. 5.8, г), видим, что на участке АО растянуты нижние волокна, значит, на этом участке изогнутая ось балки будет иметь выпуклость вниз. На участке ОД растянуты верхние волокна, поэтому изогнутая ось балки на этом участке будет иметь выпуклость вверх. Таким образом, под точкой О, где Mx = 0, кривизна изогнутой оси балки меняет знак, т.е. упругая линия имеет в этом сечении точку перегиба. Учитывая это, строим приблизительный вид изогнутой оси балки (рис. 5.8, д).

2.2. Подбор поперечного сечения балки. Опасным сече­нием является то, в котором возникает наибольший по абсолютной величине изгибающий момент. В нашем примере опасным является сечение Е, где Mmax = 42,5 кН×м. Прямоугольное сечение балки из клееной древесины подбираем из условия прочности при рас­четном сопротивлении RH = 16×103 кН/м2 и соотношения h/b = 1,5:

Схема I. Консольная балка (задача №6) - student2.ru ,

откуда требуемый момент сопротивления сечения балки при изгибе будет равен:

Схема I. Консольная балка (задача №6) - student2.ru = 2,66×10-3 м3.

Момент сопротивления прямоугольного сечения равен:

Схема I. Консольная балка (задача №6) - student2.ru .

Приравняв его Схема I. Консольная балка (задача №6) - student2.ru , получим Схема I. Консольная балка (задача №6) - student2.ru =
= 0,288 м, тогда:

Схема I. Консольная балка (задача №6) - student2.ru 0,192 м.

Округляя, принимаем брус поперечным сечением h´b = 0,29´ ´0,19 м2, (Wx = 2,663×10-3м3).

5.4.2. Схема II. Двухопорная балка (задача № 7)

1. Построить эпюры Qy и Mx. Существенное отличие этой схемы (рис. 5.13, а) от предыдущего примера расчета (рис. 5.8, а) заключается в том, что при рассмотрении однопролетной консоль­ной балки, для определения внутренних силовых факторов с при­менением метода сечений, мы последовательно рассматривали рав­новесие той части системы, где отсутствовало опорное сечение. Данное обстоятельство позволило без предварительного определе­ния опорных реакций, вычислить значения внутренних усилий. Так как этот прием, в данном случае, нереализуем, поэтому предвари­тельно необходимо определить полную систему внешних сил, кото­рая включает заданную систему и все опорные реакции.

Определение опорных реакций

При общем случае нагружения в заданной системе возникают три опорные реакции. Однако, учитывая особенности характера на­гружения, т.е. все внешние силы направлены по оси y, поэтому можно утверждать, что горизонтальная опорная реакция в опорном сечении А в данном случае равна нулю. Вертикальные опорные реакции могут быть определены из условий SMA = 0; SMB = 0.

Необходимым и достаточным условием проверки правильности определения вертикальных опорных реакций является Sy = 0, т.к. это уравнение статики, применительно к рассматриваемой системе, которое содержит все искомые опорные реакции.

Из SMA = 0 получим:

SMA = -Р×1 + q×5×4,5 - m - RB×6 = 0,

откуда

Схема I. Консольная балка (задача №6) - student2.ru кН.

Из уравнения SMB = 0 будем иметь:

SMB = -P×7 - m - q×5×1,5 + RA ×6 =0; RA = 40 кН.

Опорные реакции RA и RB получились положительными. Это означает, что выбранные направления совпадают с их действитель­ными направлениями. После определения опорных реакций сле­дует провести проверку правильности их вычисления.

Схема I. Консольная балка (задача №6) - student2.ru

Рис. 5.13

Sy = -P - q×5 + RA + RB = 0; -10 - 20×5 + 40 + 70 = 0;

-110 + 110 = 0; 0 = 0.

Удовлетворение этого уравнения говорит о правильности вы­числения величин и направления опорных реакций.

Определение количества участков

Учитывая, что границами участков являются точки приложения внешних сил и опорных реакций, а также сечения, где распределенная нагрузка меняется скачкообразно. Поэтому заданная балка имеет че­тыре участка: I участок - КА; II участок - АС; III участок - СВ и IV участок - ВD (рис. 5.13, б).

Составление аналитических выражений Qy, Mx и определение значений их в характерных сечениях каждого участка

Поместив начало системы координат в центре тяжести крайнего левого поперечного сече­ния балки, и рассекая ее в пределах участка I, рассмотрим равнове­сие левой части балки длиной z1 (рис. 5.14, а). Составив уравнения равновесия Sy = 0 и Схема I. Консольная балка (задача №6) - student2.ru для этой части, найдем аналитиче­ские выражения изменения Qy и Mx на участке I, где z1 изменяется в пределах 0 £ z1 £ 1 м:

Схема I. Консольная балка (задача №6) - student2.ru

Рис. 5.14

Sy = 0, - Схема I. Консольная балка (задача №6) - student2.ru - P = 0, Схема I. Консольная балка (задача №6) - student2.ru = -P (постоянная величина);

Схема I. Консольная балка (задача №6) - student2.ru , - Схема I. Консольная балка (задача №6) - student2.ru - P×z1 = 0, Схема I. Консольная балка (задача №6) - student2.ru = -P×z1 (уравнение прямой линии).

Знак “минус” у Схема I. Консольная балка (задача №6) - student2.ru говорит о том, что в этом сечении возни­кает поперечная сила, действующая в направлении, обратном показанному на рис. 5.14, а, а у Схема I. Консольная балка (задача №6) - student2.ru - что в сечении будет возникать изгибающий момент, растягивающий верхние волокна, а не ниж­ние, как показано на рис. 5.14, а. Для определения величин Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru в характерных сечениях этого участка подставим значения z1 в полученные аналитические выражения:

при z1 = 0 Схема I. Консольная балка (задача №6) - student2.ru = -10 кН, Схема I. Консольная балка (задача №6) - student2.ru = -10×0 = 0;

при z1 = 1 м Схема I. Консольная балка (задача №6) - student2.ru = -10 кН, Схема I. Консольная балка (задача №6) - student2.ru = -10×1 = -10кН×м.

Проведя сечение в пределах участка II, рассмотрим равновесие левой отсеченной части балки (рис. 5.14, б) и из уравнений равно­весия Sy = 0 и Схема I. Консольная балка (задача №6) - student2.ru найдем аналитические выражения для Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru на этом участке, где z2 изменяется в пределах 1 м £ £ z2 £ 3 м:

Sy = 0, - Схема I. Консольная балка (задача №6) - student2.ru - P + RA = 0, Схема I. Консольная балка (задача №6) - student2.ru = RA - P (постоянная величина);

Схема I. Консольная балка (задача №6) - student2.ru , - Схема I. Консольная балка (задача №6) - student2.ru - P×z2 + RA (z2 - 1) = 0,

Схема I. Консольная балка (задача №6) - student2.ru = RA (z2 - 1) - P×z2 (уравнение прямой линии).

Подставив в полученные выражения значения z2 , соответству­ющие граничным сечениям участка II, определим величины Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru , возникающие в этих сечениях:

при z2 = 1 м Схема I. Консольная балка (задача №6) - student2.ru = 40 - 10 = 30 кН,

Схема I. Консольная балка (задача №6) - student2.ru = 40×(1 - 1)-10×1 = -10 кН×м;

при z2 = 3 м Схема I. Консольная балка (задача №6) - student2.ru = 30 кН, Схема I. Консольная балка (задача №6) - student2.ru = 40×(3 - 1) - 10×3 = 50 кН×м.

Сделав сечение в пределах участка III, составив и решив урав­нения равновесия Sy = 0 и Схема I. Консольная балка (задача №6) - student2.ru для левой отсеченной части (рис. 5.15), получим аналитические выражения изменения Qy и Mx на участке III, где z3 изменяется в пределах 3 £ z3 £ 7 м:

Sy = 0, - Схема I. Консольная балка (задача №6) - student2.ru - P + RA - q×(z3 - 3) = 0,

Схема I. Консольная балка (задача №6) - student2.ru = RA - P - q×(z3 - 3) -уравнение прямой;

Схема I. Консольная балка (задача №6) - student2.ru , Схема I. Консольная балка (задача №6) - student2.ru ,

Схема I. Консольная балка (задача №6) - student2.ru - уравнение параболы.

Схема I. Консольная балка (задача №6) - student2.ru Рис. 5.15

Теперь найдем Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru в граничных сечениях С и В уча­стка III: при z3 = 3 м Схема I. Консольная балка (задача №6) - student2.ru = 40 - 10 -
- 20×(3- 3) = 30 кН,

Схема I. Консольная балка (задача №6) - student2.ru = 40×(3 - 1)-10×3 - Схема I. Консольная балка (задача №6) - student2.ru = -50 кН×м;

при z3 = 7 м Схема I. Консольная балка (задача №6) - student2.ru = 40 - 10 - 20×(7 - 3) = -50 кН,

Схема I. Консольная балка (задача №6) - student2.ru = 40×(7 - 1) - 10×7 - Схема I. Консольная балка (задача №6) - student2.ru = 10 кН×м.

Как видно, поперечная сила Схема I. Консольная балка (задача №6) - student2.ru на этом участке принимает в некотором сечении нулевое значение и меняет знак при прохож­дении через него (рис. 5.13, в). Поэтому в сечении, где Схема I. Консольная балка (задача №6) - student2.ru =
Схема I. Консольная балка (задача №6) - student2.ru = 0, будет экстремальное значение изгибающего момента. Для его определения найдем величину z0 , при котором Схема I. Консольная балка (задача №6) - student2.ru = 0. Приравняв выражение для Схема I. Консольная балка (задача №6) - student2.ru к нулю, получим:

RA -P - q×(z0 - 3) = 0, Схема I. Консольная балка (задача №6) - student2.ru м.

Подставив найденное значение z0 = 4,5 м в выражение для Схема I. Консольная балка (задача №6) - student2.ru , найдем величину экстремального значения изгибающего мо­мента на этом участке Mmax = 72,5 кН×м.

Для получения аналитических выражений изменения Qy и Mx на участке IV целесообразно начало координат перенести в сечение D и рассматривать равновесие правой отсеченной части, т.к. в этом случае вследствие меньшего количества внешних сил, приложенных к правой части балки, аналитические выражения будут проще по своему виду, а вычисление ординат менее трудоемко.

Схема I. Консольная балка (задача №6) - student2.ru Рис. 5.16

Аналитические выражения Схема I. Консольная балка (задача №6) - student2.ru и Схема I. Консольная балка (задача №6) - student2.ru на участке IV (рис. 5.16) (0 £ z4 £ £ 1 м) получим из следующих уравне­ний:

Sy = 0, - Схема I. Консольная балка (задача №6) - student2.ru - q×z4 = 0, Схема I. Консольная балка (задача №6) - student2.ru = q×z4 - (прямая линия);

Схема I. Консольная балка (задача №6) - student2.ru , Схема I. Консольная балка (задача №6) - student2.ru , Схема I. Консольная балка (задача №6) - student2.ru - (парабола).

В граничных сечениях D и В участка IV ординаты эпюр Qy и Mx :

при z4 = 0 Схема I. Консольная балка (задача №6) - student2.ru = 0, Схема I. Консольная балка (задача №6) - student2.ru = 20 кН×м;

при z4 = 1 м Схема I. Консольная балка (задача №6) - student2.ru = 20×1 =20 кН, Схема I. Консольная балка (задача №6) - student2.ru кН×м.

Так как величина Схема I. Консольная балка (задача №6) - student2.ru на участке IV изменяется по закону квадратной параболы, то для уточнения ее очертания надо опреде­лить ординату эпюры Mx в каком-нибудь промежуточном сечении. Например, при z4 = 0,5 м, где ордината Схема I. Консольная балка (задача №6) - student2.ru будет равна:

Схема I. Консольная балка (задача №6) - student2.ru Схема I. Консольная балка (задача №6) - student2.ru кН×м.

Построение эпюр Qy и Mx для всей балки

Откладывая перпендикулярно от оси абсцисс в удобном для пользования масштабе значения Qy и Mx , возникающие в харак­терных и промежуточных сечениях каждого участка, и соединяя концы полученных ординат линиями, соответствующими законам изменения Qy и Mx на этих участках, строим эпюры Qy и Mx для всей балки (рис. 5.13, в, г).

2.1. Руководствуясь эпюрой Mx показать приблизи­тельный вид изогнутой оси балки. Анализируя эпюру Mx (рис. 5.13, г) видим, что на участке КО растянуты верхние волокна, и поэтому на этом участке изогнутая ось балки будет иметь вы­пуклость вверх. На участке ОD растянуты нижние волокна, и изо­гнутая ось балки будет иметь выпуклость вниз. Вследствие этого под т. О, где Mx = 0, будет точка перегиба. Учитывая все сказанное и то, что прогибы в опорных сечениях равны нулю, строим при­близительный вид изогнутой балки (рис. 5.13, д).

2.2. Подбор поперечного сечения балки. Опасным явля­ется сечение Е, где возникает наибольший по абсолютной величи­не Mmax = 72,5 кН×м. Двутавровое сечение балки подбираем из ус­ловия прочности при изгибе при расчетном сопротивлении мате­риала RH = 200×103 кН/м2 (сталь):

Схема I. Консольная балка (задача №6) - student2.ru .

Откуда требуемый момент сопротивления Wx равен:

Схема I. Консольная балка (задача №6) - student2.ru м3 .

По сортаменту (ГОСТ 8239-72) принимаем двутавр № 27 с Wx = 37,1×10-5 м3. В этом случае при проверке прочности получа­ется недонапряжение, но оно будет меньше 5%, что допускается СНиП при практических расчетах.

Наши рекомендации