Постановки экстремальных задач

ВВЕДЕНИЕ

Оптимизационный подход к постановке и решению задач математического моделирования является важным фактором повышения качества планирования, управления и проектирования сложных объектов. В частности, методы оптимизации используют: при конструировании математической модели сложного явления для определения ее структуры и параметров, обеспечивающих наилучшее согласование с реальностью; в процедурах принятия решений, для осуществления оптимального выбора; в вычислительных процессах, для реализации встроенных средств решения вспомогательных задач оптимизации. Большинство реальных задач не может быть адекватно описано линейными моделями и требует, как правило, учета нелинейных эффектов и использования методов нелинейного программирования для решения задач оптимизации.

Предмет «Методы оптимизации» – это предмет, в котором изучаются экстремальные (оптимизационные) задачи, существование решений оптимизационных задач, необходимые и достаточные признаки оптимальности, численные (точные и приближенные) методы решения экстремальных задач. «Методы оптимизации» – неотъемлемая часть «Исследования операций» – предмета, изучающего математические модели задач принятия решений. Поэтому областью применения данного предмета являются математические модели экономических, технических, социальных и других задач принятия решений.

Дисциплина «Методы оптимизации» опирается на математический анализ, функциональный анализ, линейную алгебру, ЭВМ и программирование. Отдельные разделы требуют знания теории дифференциальных уравнений, теории вероятностей и математической статистики. Необходимые вопросы предмета «Методы оптимизации» освещаются в многочисленных источниках, которые, зачастую, имеются в ограниченном количестве в библиотеках. Изложенный материал призван снабдить студентов необходимыми сведениями теории и методов оптимизации, систематизированными в единой разработке.

Глава 1. Основные определения

Постановки экстремальных задач

Многие задачи, как практического, так и теоретического характера касаются выбора «наилучшей» конфигурации или множества параметров для достижения некоторой цели. Сложилась иерархия таких задач вместе с соответствующим набором методов их решения. Объектом иерархии является общая задача нелинейного программирования (НЛП):

Постановки экстремальных задач - student2.ru (1.1.1)

Постановки экстремальных задач - student2.ru Постановки экстремальных задач - student2.ru (1.1.2)

Постановки экстремальных задач - student2.ru Постановки экстремальных задач - student2.ru (1.1.3)

где Постановки экстремальных задач - student2.ru Постановки экстремальных задач - student2.ru – произвольные функции параметра Постановки экстремальных задач - student2.ru .

От задачи максимизации, после замены Постановки экстремальных задач - student2.ru осуществляется переход к задаче минимизации. Поэтому почти всегда будем говорить о задаче минимизации.

В задаче (1.1.1)-(1.1.3), Постановки экстремальных задач - student2.ru , Постановки экстремальных задач - student2.ru - целевая функция, а множество точек Постановки экстремальных задач - student2.ru , удовлетворяющих ограничениям (1.1.2), (1.1.3) – это допустимое множество, которое будем обозначать X.

В теории НЛП изучаются:

1) проблемы существования решения;

2) проблемы установления признаков оптимальности, т.е. установления характерных свойств, присущих точкам минимума;

3) методы вычисления оптимальных решений.

Наши рекомендации