Теорема Котельникова-Шеннона
Физический смысл теоремы Котельникова-Шеннона: если максимальная частота в сигнале равна f, то достаточно на одном периоде этой гармоники иметь минимум 2 отсчета с известными значениями t1 и t2, как появляется возможность записать систему из двух уравнений (y1=a cos 2ft1 и y2=a cos 2ft2) и решить систему относительно 2-х неизвестных – амплитуды а и частоты f этой гармоники. Следовательно, частота дискретизации должна быть в 2 раза больше максимальной частоты f в сигнале. Для более низких частот это условие будет выполнено автоматически.
На практике эта теорема широко используется например в преобразовании аудиозаписей Диапазон воспринимаемых человеком частот от 20гц – до 20 кгц поэтому для преобразования без потерь необходимо выполнять дискретизацию с частотой более 40 кгц поэтому cd dvd mp3 оцифровывают с частотой 44.1 кгц . Операция квантования (аналогово-цифровое преобразование АЦП ADC) заключается в преобразовании дискретного сигнала в цифровой кодированный в двоичной сист. счисления
Понятие системы
Система любого назначения всегда имеет вход на который подаётся входной сигнал или входное воздействие (в общем случае многомерное) и выход с которого снимается обработанный выходной сигнал. Если устройство системы и внутренние операции преобразований принципиального значения не имеют, то система в целом может восприниматься как чёрный ящик в формализованном виде.
Формализованная система представляет собой определенный системный оператор (алгоритм) преобразования входного сигнала – воздействия s(t), в сигнал на выходе системы y(t) – отклик или выходную реакцию системы. Символическое обозначение операции преобразования (трансформации):
y(t) = T[s(t)].
Для детерминированных входных сигналов соотношение между входными и выходными сигналами однозначно задаётся системным оператором.
Системный опреатор t
Системный операторT - это правило (набор правил, алгоритм) преобразования сигнала s(t) в сигнал y(t). Для общеизвестных операций преобразования сигналов применяются также расширенные символы операторов трансформации, где вторым символом и специальными индексами обозначается конкретный вид операции (как, например, TF - преобразование Фурье, TF-1 - обратное преобразование Фурье).
Линейные и не линейные системы
В случае реализации на входе системы случайного входного сигнала также существует однозначное соответствие процессов на входе и выходе, однако при этом происходит изменение статистических характеристик выходного сигнала. Любые преобразования сигналов сопровождаются изменением их спектра и по характеру этих изменений их делят на 2 вида линейные и нелинейные
К нелинейным относят при котором в составе спектра сигналов появляются новые гармонические составляющие, а при линейных изменениях сигналов изменяются амплитуды составляющего спектра. Оба вида изменений могут происходить с сохранением и искажением полезной информации. Линейные системы составляют основной класс систем обработки сигналов.
Термин линейность – означает, что система преобразования сигналов должна иметь произвольную, но обязательно линейную зависимость между входным и выходным сигналами.
Система считается линейной если в пределах установленной области входных и выходных сигналов её реакция на входные сигналы аддитивна( выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия).
Принцип аддитивности
Принцип аддитивноститребует, чтобы реакция на сумму двух входных сигналов была равна сумме реакций на каждый сигнал в отдельности:
T[a(t)+b(t)] = T[a(t)]+T[b(t)].
Принцип однородности
Принцип однородностиили пропорционального подобия требует сохранения однозначности масштаба преобразования при любой амплитуде входного сигнала:
T[c ´ a(t)]= c ´ T[a(t)].