Загальні теоретичні положення про рівняння

Лекція

Методика вивчення рівнянь у основній школі

Вступ

Рівняння і системи рівнянь пронизують весь курс шкільної математики. Найпростіші рівняння учні розв’язують ще у початковій школі. Але букву х називають не змінною, а невідомим числом.

Всі класи рівнянь та їх систем можна поділити на дві групи.

Перша група – раціональні рівняння та їх системи. Найбільш важливими класами у цій групі є:

1) лінійні рівняння з однією змінною;

2) лінійні рівняння з двома змінними;

3) системи лінійних рівнянь з двома змінними;

4) квадратні рівняння;

5) лінійні нерівності з однією змінною;

6) квадратні нерівності.

Друга група – ірраціональні, показникові, логарифмічні, тригонометричні рівняння.

Перша група вивчається у 7-9 класах, а друга в 10-11 класах.

Послідовність вивчення різних класів рівнянь та їх систем різна у різних підручниках. Однак, кількість можливих варіантів для послідовності їх введення невелика, бо класи рівнянь перебувають у певній логічній залежності, яка впливає на порядок їх появи у шкільному курсі.

Спочатку вивчають рівняння, а потім їх системи. Таке роздільне вивчення проводиться до теорії квадратного тричлена, яка вивчається у 9-му класі.

1. Пропедевтика вивчення систематичного курсу рівнянь

Найпростіші рівняння та їх системи учні розв’язують ще у початковій школі.

У 5-му класі розкривається зміст таких понять, як рівняння (рівність, що містить невідоме число називається рівнянням; значення невідомого, при якому рівняння перетворюється у правильну числову рівність, називається розв’язком або коренем рівняння).

Розв’язати рівняння, означає знайти всі його корені. Рівняння розв’язується на основі залежностей між компонентами чотирьох арифметичних дій.

У 6-му класі учні розв’язують рівняння, яке містить змінну, як у лівій, так і правій частинах. Після вивчення розподільного закону множення значно розширюється круг задач, що розв’язуються за допомогою рівнянь.

В міру вивчення теоретичного матеріалу вводять нові види рівнянь та їх систем. Крім цього розширюється множина розв’язків рівнянь та їх систем, бо вивчаються від’ємні раціональні числа, розв’язуються найпростіші рівняння з модулями, рівняння, що містять дужки, вводиться поняття коефіцієнту та застосовуються поступово нові способи розв’язування рівнянь ( за допомогою додавання до обох частин рівняння x+a=b числа, протилежного до а, перенесення доданків з однієї частини в другу, зведення подібних доданків, ділення обох частин на коефіцієнт при невідомому).

Наприклад:

2(х+3)=3(х-4);

2х+6=3х-12;

2х-3х=-12-6;

-х=-18;

х=18.

Коли учні зрозуміли що таке рівняння, можна вводити поняття розв’язку рівняння. Один з методичних прийомів є застосування таблиць:

Загальні теоретичні положення про рівняння - student2.ru х Загальні теоретичні положення про рівняння - student2.ru -2
5х+4=3х 5+4=3 0+4=0 Загальні теоретичні положення про рівняння - student2.ru +4= Загальні теоретичні положення про рівняння - student2.ru -10+4=-6
Правильно ------- ------- ------- прав.
Неправильно непр. непр. непр. ------

Таблиці заповнюються у процесі евристичної бесіди.

Систематичне вивчення теорії про рівняння розпочинається у курсі алгебри 7-го класу.

У цілому розгляд теоретичного матеріалу про рівняння у 7-9 класах проводиться переважно на індуктивному рівні з використанням елементів дедукції.

Загальне поняття рівняння та його властивості вводяться індуктивно, але розгляд окремих видів рівнянь проводиться з використанням елементів дедуктивних міркувань.

Наприклад, поняття лінійного рівняння з однією змінною вводиться за означенням, у якому відправним пунктом є загальний вигляд лінійного рівняння.

В усіх класах формування поняття рівняння і вироблення навичок їх розв’язування проводиться на простих вправах, з метою, щоб технічне розв’язання не закривала суті питання.

У 8-му класі вивчаються квадратні рівняння, розв’язуються раціональні рівняння, дробово-раціональні рівняння, графічний спосіб розв’язування квадратних рівнянь.

У 9-му класі вивчаються рівняння і системи рівнянь, графічний розв’язок системи рівнянь, рівняння 3-го і 4-го степеня з однією змінною, які розв’язуються за допомогою розкладання на множники і введення допоміжної змінної. Вводиться поняття рівносильності рівнянь (якщо корені 1-го рівняння є корені 2-го, а корені 2-го є корені 1-го, то ці рівняння рівносильні).

Наприклад:

2х+3=8 2х+3+10=8+10

х=2,5, х=2,5.

Загальні теоретичні положення про рівняння

Систематичне вивчення теорії рівнянь розпочинається з 7-го класу.

Основна мета – систематизувати і узагальнити відомості про розв’язання рівнянь з однією змінною. Розширити поняття про рівняння, їх види та методи розв’язання.

У 7-му класі дається означення рівняння, вводяться основні поняття. Загальне поняття рівняння і його властивості вводяться індуктивно, а розгляд окремих видів рівнянь здійснюється з використанням елементів дедуктивних міркувань.

Клас Зміст матеріалу Основні поняття
Загальні відомості про рівняння. Властивості рівнянь Рівняння, корінь (розв’язок) рівняння, розв’язати рівняння, ліва, права частини рівняння, рівносильність рівнянь.
Лінійні рівняння з однією змінною ax=b. Лінійні рівняння з двома змінними ax+by=c. Системи лінійних рівнянь з двома змінними. Графік лінійного рівняння,пара чисел розв’язку рівняння системи рівняння.
Квадратні рівняння. Дробово-раціональні рівняння.  
Біквадратне рівняння. Нелінійні системи рівнянь.  

Означення 1.Рівняння f(x)= Загальні теоретичні положення про рівняння - student2.ru (х) називається алгебраїчним, якщо f(x) і Загальні теоретичні положення про рівняння - student2.ru (х) – многочлени. Рівняння називається дробово-раціональним, якщо f(x) і Загальні теоретичні положення про рівняння - student2.ru (х) – раціональні функції, причому хоча б одна з них дробово-раціональна відносно змінної х.

Означення 2. Рівняння називається ірраціональним, якщо f(x) і Загальні теоретичні положення про рівняння - student2.ru (х) – елементи алгебраїчної функції і хоча б одна з них ірраціональна відносно змінної х.

Означення 3. Рівняння називається трансцендентним, якщо (x) і Загальні теоретичні положення про рівняння - student2.ru (х) – елементи функції і хоча б одна з них трансцендентна відносно змінної х.

Класифікація рівнянь

 
  Загальні теоретичні положення про рівняння - student2.ru

Розв’язати рівняння можна на різних теоретичних основах.

Є такі способи розв’язання рівнянь в основній школі:

1) на основі залежностей між компонентами та результатами дій;

2) за властивостями рівностей;

3) за теоремами про рівносильність рівнянь;

4) графічний спосіб.

У 8-му класі вивчаються рівняння із змінною у знаменнику. Розв’язувати їх можна двома способами:

1) зведення рівняння до виду Загальні теоретичні положення про рівняння - student2.ru =0, яке зводиться до системи

Загальні теоретичні положення про рівняння - student2.ru f(x)=0

g(x) Загальні теоретичні положення про рівняння - student2.ru 0;

2) зведення до виду Загальні теоретичні положення про рівняння - student2.ru = Загальні теоретичні положення про рівняння - student2.ru , яке зводиться до системи

Загальні теоретичні положення про рівняння - student2.ru f(x)=f1(x)

g(x) Загальні теоретичні положення про рівняння - student2.ru 0.

Означення 1.Рівняння Pn(x)=0, де Pn(x) – ціла раціональна функція n-го степеня, називається алгебраїчно раціональним рівнянням n-го степеня.

Наприклад. 2х+7=0, 3х2-5х+8=0, 5х3-4х2+2=0.

Раціональні рівняння поділяються на:

1. Лінійні рівняння – рівняння виду ax+b=0, де a і b – деякі числа, причому а Загальні теоретичні положення про рівняння - student2.ru 0. Його ще називають рівнянням першого степеня (бо має єдиний розв’язок х=- Загальні теоретичні положення про рівняння - student2.ru ). Якщо не має умови а Загальні теоретичні положення про рівняння - student2.ru 0, називається лінійним рівнянням, яке має більше розв’язків:

а) а Загальні теоретичні положення про рівняння - student2.ru 0, ax+b=0 Загальні теоретичні положення про рівняння - student2.ru х=- Загальні теоретичні положення про рівняння - student2.ru ;

б) а=0, b=0, ax+b=0 Загальні теоретичні положення про рівняння - student2.ru хєR;

в) а=0, b Загальні теоретичні положення про рівняння - student2.ru 0, ax+b=0 Загальні теоретичні положення про рівняння - student2.ru хє Загальні теоретичні положення про рівняння - student2.ru .

2. Квадратні рівняння – це рівняння виду ax2+bx+c=0, де a,b,c – деякі числа, причому а Загальні теоретичні положення про рівняння - student2.ru 0.

Розрізняють повні та неповні квадратні рівняння.

Наши рекомендации