Определение правильной пирамиды

Определение 1. Пирамида называется правильной, если её основанием является правильный многоугольник, при этом вершина такой пирамиды проецируется в центр ее основания.

Определение 2. Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.

Определение правильной пирамиды - student2.ru

Правильная усеченная пирамида

Если провести сечение, параллельное основанию пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой. Усечённая пирамида называется правильной, если пирамида, из которой она была получена – правильная.

Свойства правильной пирамиды

  • боковые ребра равны
  • апофемы равны
  • боковые грани равны
  • все боковые грани являются равные равнобедренными треугольниками
  • в любую правильную пирамиду можно как вписать, так и описать около неё сферу
  • если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна π, а каждый из них соответственно , где n — количество сторон многоугольника основания
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему

Правильная пирамида

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия, задачи о пирамиде). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√".

Задача

Апофема правильной треугольной пирамиды равна 4см, а двугранный угол при основании равен 60 градусов. Найдите объем пирамиды.

Решение.

Поскольку пирамида правильная, учтем следующее:

  • Высота пирамиды проецируется на центр основания
  • Центр основания правильной пирамиды по условию задачи - равносторонний треугольник
  • Центр равностороннего треугольника является одновременно центром вписанной и описанной окружности
  • Высота пирамиды образует с плоскостью основания прямой угол

Объем пирамиды можно найти по формуле:
V = 1/3 Sh

Поскольку апофема правильной пирамиды образует вместе с высотой пирамиды прямоугольный треугольник, для нахождения высоты используем теорему синусов. Кроме того, примем во внимание:

  • Первый катет рассматриваемого прямоугольного треугольника является высотой, второй катет - радиусом вписанной окружности (в правильном треугольнике центр одновременно является центром вписанной и описанной окружности), гипотенуза является апофемой пирамиды
  • Третий угол прямоугольного треугольника равен 30 градусам ( сумма углов треугольника - 180 градусов, угол 60 градусов дан по условию, второй угол - прямой по свойствам пирамиды, третий 180-90-60 = 30 )
  • синус 30 градусов равен 1/2
  • синус 60 градусов равен корню из трех пополам
  • синус 90 градусов равен 1

Согласно теореме синусов:
4 / sin( 90 ) = h / sin ( 60 ) = r / sin( 30 )
4 = h / ( √3 / 2 ) = 2r
откуда
r = 2
h = 2√3

В основании пирамиды лежит правильный треугольник, площадь которого можно найти по формуле:
S правильного треугольника = 3√3 r2.
S = 3√3 22 .
S = 12√3 .

Теперь найдем объем пирамиды:
V = 1/3 Sh
V = 1/3 * 12√3 * 2√3
V = 24 см3 .

Ответ: 24 см3 .

Задача

Высота и сторона основания правильной четырехугольной пирамиды соответственно равны 24 и 14. найдите апофему пирамиды.
Определение правильной пирамиды - student2.ru

Решение.

Поскольку пирамида правильная, то в ее основании лежит правильный четырехугольник - квадрат. Кроме того, высота пирамиды проецируется в центр квадрата. Таким образом, катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.

Откуда по теореме Пифагора длина апофемы будет найдена из уравнения:

72 + 242 = x2
x2 = 625
x = 25

Ответ: 25 см

Наши рекомендации