Тема 8. Статистические гипотезы и принятие решения о выборе метода математической обработки данных
Статистические гипотезы
Формулирование гипотез систематизирует предположения исследователя и представляет их в четком виде.
Статистические гипотезы подразделяются на нулевые и альтернативные, направленные и ненаправленные.
Статистические гипотезы
Направленные Ненаправленные
Нулевая Альтернативная Нулевая Альтернативная
Нулевая гипотеза- это гипотеза об отсутствии различий. Она обозначается как Но и называется нулевой потому, что содержит число 0: X1—Х2 = 0, где X1, X2 - сопоставляемые значения признаков. Нулевая гипотеза - это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.
Альтернативная гипотеза- это гипотеза о значимости различий.
Она обозначается как H1. Альтернативная гипотеза - это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.
Бывают задачи, когда мы хотим доказать как раз незначимость различий, то есть подтвердить нулевую гипотезу. Например, если нам нужно убедиться, что разные испытуемые получают хотя и различные, но уравновешенные по трудности задания, или что экспериментальная и контрольная выборки не различаются между собой по каким-то значимым характеристикам. Однако чаще нам все-таки требуется доказать значимость различий, т.к. они более информативны для нас в поиске нового.
Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.
Направленные гипотезы Ненаправленные гипотезы
Н0: Х1 не превышает Х2 Н0: Х1 не отличается от Х2
Н1: Х1 превышает Х2 Н1: Х1 отличается от Х2
Если вы заметили, что в одной из групп индивидуальные значения испытуемых по какому-либо признаку, например по социальной смелости, выше, а в другой ниже, то для проверки значимости этих различий нам необходимо сформулировать направленные гипотезы.
Если мы хотим доказать, что в группе А под влиянием каких-то экспериментальных воздействий произошли более выраженные изменения, чем в группе Б, то нам тоже необходимо сформулировать направленные гипотезы.
Если же мы хотим доказать, что различаются формы распределения признака в группе А и Б, то формулируются ненаправленные гипотезы.
Распределение признака:Распределением признака называется закономерность встречаемости разных его значений. В психологических исследованиях чаще всего ссылаются на нормальное распределение. Нормальное распределение характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине - достаточно часто. Нормальным такое распределение называется потому, что оно очень часто встречалось в естественно-научных исследованиях и казалось "нормой" всякого массового случайного проявления признаков. График нормального распределения представляет собой привычную глазу психолога-исследователя так называемую колоколообразную кривую.
Проверка гипотез осуществляется с помощью критериев статистической оценки различий.
Статистические критерии
Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью.
Статистические критерии обозначают также метод расчета определенного числа и само это число.
Когда мы говорим, что достоверность различий определялась по критерию X2 имеем в виду, что использовали метод X2 Для расчета определенного числа.
Когда мы говорим, далее, что X2 =12,676, то имеем в виду определенное число, рассчитанное по методу X2. Это число обозначается как эмпирическое значение критерия.
Критерии делятся на параметрические и непараметрические.
Параметрические критерии
Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (критерий Стьюдента, критерий F и др.)
Непараметрические критерии
Критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Вилкоксона и др.)
И те, и другие критерии имеют свои преимущества и недостатки.
Уровень значимости
Уровень значимости является мерой статистической достоверности результата вычислений, в случае например корреляции, он служит основанием для интерпретации. Если исследование показало, что уровень значимости корреляции не превышает 0,05, то это означает, что с вероятностью 5 % и менее корреляция является случайной. Обычно это является основанием для вывода о статистической достоверности корреляции. В противном случае (р > 0,05) связь признается статистически недостоверной и не подлежит содержательной интерпретации.
Исторически сложилось так, что в психологии принято считать низшим уровнем статистической значимости 5%-ый уровень (р<0,05): достаточным - 1%-ый уровень (р<0,01) и высшим 0,1%-ый уровень (р<0,001).
До тех пор, однако, пока уровень статистической значимости не достигнет р=0,05, мы еще не имеем права отклонить нулевую гипотезу.
Ошибки I и II рода:
1) состоит в том, что мы отклонили нулевую гипотезу, в то время как она верна
2) состоит в том, что мы приняли нулевую гипотезу, в то время как она неверна.
Мощность критериев
Мощность критерия - это его способность выявлять различия, если они есть. Иными словами, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.
Мощность критерия определяется эмпирическим путем. Одни и те же задачи могут быть решены с помощью разных критериев, при этом обнаруживается, что некоторые критерии позволяют выявить различия там, где другие оказываются неспособными это сделать, или выявляют более высокий уровень значимости различий.
Основанием для выбора критерия может быть:
а) простота;
б) более широкий диапазон использования (например, по отношению к данным, определенным по номинативной шкале, или по отношению к большим n);
в) применимость по отношению к неравным по объему выборкам;
г) большая информативность результатов.