Истоки искусственного интеллекта
Происхождение современной компьютерной науки (спутником которой на самом деле является ИИ) можно отнести к 40-м годам, когда для ускорения долгих и утомительных математических вычислений были изобретены ламповые компьютеры UNIVAC и ENIAC. Эти ранние простодушные и не
'Хэл (HAL) — имя-аббревиатура "tfeuristically programmed a/goritmic computer" = эвристически программированный алгоритмический компьютер '
2С другой стороны, многие всерьез сомневаются, что компьютер действительно когда-нибудь сможет перехитрить человека в важных областях. Ней-ропсихолог Джон Экклз в работе "The Understanding of the Brain" ("Понимание мозга") пишет, что те, кто "...высокомерно заявляет о том, что компьютеры скоро перехитрят человека во всем... представляют собой современный вариант изготовителей идолов из некоторых суеверных эпох; подобно последним, они стремятся к власти посредством культивации идолопоклонства".
Мышление и интеллект - естественный и искусственный 496
слишком эффективные гиганты открыли дорогу для более компактных, более мощных и более сложных систем, которые, в свою очередь, постепенно сменились микроэлектронными компьютерами, прочно вошедшими во всеобщее пользование. Эти инструменты в основном помогают людям решать математические задачи в коммерческих и промышленных исследованиях. ИИ служит не этим практическим нуждам калькуляций и индексаций, но, как мы уже сказали, связан с задачами когнитивной психологии по разработке компьютерных программ, моделирующих человеческое познание. Какое-то время назад некоторые чисто научные открытия ранних пионеров ИИ получили практическое коммерческое применение и стали важной частью деловых операций в Америке, Европе и Японии.
В когнитивной психологии найдется немного более важных дат, чем 1956 год.3 Летом того года группа из десяти ученых встретилась на территории колледжа Дортмут с целью обсудить возможность создания компьютерных программ, способных к разумному поведению. Среди участников этой конференции были: Джон МакКарти, основавший впоследствии лаборатории ИИ в Массачусеттском Технологическом институте (МТИ) и Стэнфордском университете и широко признанный как человек, окрестивший новую науку "Искусственным Интеллектом"; Марвин Минский, ставший затем директором лаборатории ИИ в МТИ; Герберт Саймон, которому предстояло получить Нобелевскую премию по экономике; и Аллен Ньюэлл, который провел очень важные работы по когнитивной науке и ИИ в университете Карнеги-Меллон. Эта конференция имела историческое значение — намечавшийся до того курс на ИИ был взят. Его зарождение непосредственно повлияло на развитие когнитивной психологии.
С момента конференции в Дортмуте развитие ИИ происходило в геометрической прогрессии — если не по числу оригинальных идей, то по количеству новых данных. В том или ином виде ИИ затрагивает сегодня жизнь большинства людей в Западном обществе, распространяется по колледжам, на нем сосредоточили свои усилия тысячи ученых. Различные ветви теории и практики ИИ невозможно изложить в единственной главе или книге и даже во многих книгах, но мы можем в этой главе представить образцы работ в области ИИ в их связи с когнитивной психологией. Изучающие ИИ и когнитивную психологию могут найти по этой теме множество глубокомысленных книг и статей, а также побывать на многих интересных конференциях.
Машины и разум: "имитирующая игра" и "китайская комната^
Я не знаю другой такой области когнитивной психологии, где происходили бы столь ожесточенные споры о моделировании человеческого мышления машинами: о "жестком" направлении ИИ. Одну сторону этого спора представляют те ревнители ИИ, которые не только верят, что машины способны точно копировать человеческое познание, но и считают, что наиболее сложные интеллектуальные процессы могут выполняться только машинами. Это надо понимать так, что компьютеры должны непосредственно уча-
3В тот году Бранер, Гуднау и Остин опубликовали книгу "Изучение мышления", Хомский — "Три модели описания языка", Миллер —"Магическое число семь плюс-минус два", Ньюэлл и Саймон — "Логическая теория машин".
Искусственный интеллект
17 Зак. 2019 497
ствовать в повседневном принятии решений людьми. С другой стороны, находятся те, кто полагает ИИ интеллектуально извращенным понятием и считает, что лк)ди, верящие в "мыслящие машины", — это материалистические идолопоклонники. Они полагают, что человеческое мышление — это чисто человеческий процесс; наверно, его можно частично синтезировать в машине, но дублировать с помощью ИИ программ его не удастся никогда.
В качестве отправной точки полезно рассмотреть дихотомию, предложенную философом из Беркли Джоном Сирлом (John Searl, 1980). Он описал две позиции в ИИ: "жесткую" и "мягкую"; согласно мягкой позиции, ИИ может использоваться как инструмент в исследованиях человеческого познания; а жесткая предполагает, что соответствующим образом запрограммированный компьютер обладает разумом и способен к пониманию. У "мягкого" ИИ мало оппонентов; почти все признают важность компьютеров в исследовании человеческого познания, и к этому почти нечего добавить. "Жесткий" ИИ, опровергаемый Сирлом, вызвал бурю протеста. Мы продолжим рассмотрение этого спора в следующем разделе про "Китайскую комнату", но сначала рассмотрим одну оригинальную задачу, предложенную британским математиком Аланом Тюрингом4 и касающуюся разума и машин.
"Имитирую-Тюринг предложил задачу, в которой человек задает вопросы неизвестно-щая игра"му-существу-использующему-язык. Задача человека — решить, можно ли или "тест отличить это от человека. В пользу Тюринга говорит то, что использова-
Тюринга" ние "имитиРУюш.ей игры", ставшей впоследствии широко известной как
"тест Тюринга", само по себе было весьма тонким обманом, который, давая специалистам по ИИ нечто конкретное для работы, уводил их внимание от философских вопросов разума, ставших главным раздражающим фактором в истории науки и философии. Не обращаясь непосредственно к философским вопросам, как это сделал Тюринг, он спрашивал: "Является ли познание функцией материальных процессов, и если да, то могут ли такие функции происходить от неорганической машины?" или "Как решить проблему тела и разума?" — т.е. он выбирал гораздо более четкие рамки вопроса, основанные на операционализме. Поскольку в литературе сохраняется определенная путаница относительно реальной природы предложенного Тюрингом теста, мы приводим его здесь довольно детально. Эту... задачу можно описать в терминах игры, известной нам как "имитирующая игра". В нее играют три человека: мужчина (А), женщина (В) и спрашивающий (С), который может быть любого пола. Цель игры для спрашивающего — определить, кто из двух других —мужчина, а кто — женщина. Для него они помечены как X и Y, и в конце игры он должен сказать либо: "X это A, a Y это В", либо: "X это В, a Y это А". Спрашивающий может задавать А и В такие, например вопросы: '
С: Не скажет ли мне X длину своих волос? Теперь предположим, что X — это на самом деле А; тогда А должен ответить. Целью игры для А является... заставить С сделать ошибочную идентификацию. Его ответ мог бы быть таким:
'Замечательное описание жизни Тюринга вместе с обсуждением вопросов ИИ можно найти в: Hofstaaten. Metamagical Themas (1985).
Мышление и интеллект - естественный и искусственный 498
"Мои волосы коротко острижены, самые длинные пряди длиной примерно 9 дюймов".
Чтобы тембр голоса не указывал спрашивающему на пол, ответы пишутся или еще лучше печатаются. Самый лучший вариант — это принтер, подключенный в соседней комнате. Другим вариантом может быть повторение ответов посредником. Цель третьего игрока (В) - помочь спрашивающему. Возможно, наилучшая стратегия для нее — это давать правдивые ответы. Она может прибавлять к своим ответам что-то вроде "Это я — женщина, не слушай его!", но это ничего не даст, поскольку аналогичные замечания может давать и мужчина.
Теперь спросим: "Что произойдет, если роль А в этой игре будет исполнять машина?" Будет ли спрашивающий при таком варианте игры ошибаться так же часто, как и тогда, когда играют мужчина и женщина? Эти вопросы заменяют первоначальный, "Может ли машина мыслить?" (Turing, 1950; р.434).
Очевидно, ценность некоторых вопросов, задаваемых для X и Y, зависит от того, какая сейчас мода, — т.е. если длину волос и прическу взять за основу различения, то, например, в 70-х годах это привело бы к очень многим ошибкам. Тем не менее, для специалистов по языку и ИИ в задаче Тюринга есть очень важный момент— для того, чтобы компьютер перехитрил нас и заставил думать, что он — это человек, он должен понимать и генерировать ответную реакцию, которая эффективно имитировала бы важную когнитивную функцию.
Можно предложить и другой тип вопроса о неразличимости функций. Предположим, что в больнице работают два хирурга. Один — выпускник знаменитой медицинской школы и считается одним из лучших хирургов в мире Другой окончил обычную медицинскую школу и считается плохим хирургом. Однажды потребовалась срочная операция, и первый хирург нездоров, так что операцию проводит второй врач, о чем не известно пациенту, находящемуся без сознания. Пациенту не говорят, какой врач проводил операцию, и он рад, что она была успешной. К тому же, другие врачи уверены, что операцию проводил первый хирург. На этом ограниченном примере мы можем заключить, что тест на неразличимость был пройден. Однако, если бы вы были этим пациентом и узнали, что операцию на самом деле проводил робот, какой вывод вы бы сделали о соотношении функциональных свойств робота и хирурга? Согласились бы вы, что они одинаковы? Почему? А Почему нет? Ответы на эти вопросы трудно найти, чего не скажешь о людях, придерживающихся твердых взглядов на этот счет Один из них — это Сирл, который вывернул "тест Тюринга" наизнанку.
Чтобы продемонстрировать, что жесткая позиция в ИИ не выдерживает "Китайскаякритики, Сирл предложил следующую головоломку. Предположим, что кого-то заперли в комнате, где много китайских текстов. Этот кто-то ничего не понимает по-китайски и даже не способен отличить китайские иероглифы от каких-нибудь еще. Снаружи этой комнаты ему передают еще один набор китайских знаков вместе с набором правил для сопоставления первого и второго набора символов. Эти правила всего лишь поаволяют
Искусственный интеллект 499
этому человеку связывать один набор символов с другим и написаны на обычном английском При помощи этих правил сопоставления человек в китайской комнате может давать осмысленные ответы на вопросы о содержании китайских текстов, несмотря на то, что он в сущности не знает этого языка Через какое-то время эта личность приобретает настолько хорошую сноровку, что может отвечать как на своем родном английском, так и на китайском языке, которого не знает, но отвечает, основываясь на правилах Результаты настолько хороши, что их "совершенно нельзя отличить от ответов урожденного китайца" (Searl, 1980, 1981) Личность, запертая в китайской комнате, — это простая конкретная иллюстрация компьютерной программы "данные на входе —данные на выходе" Вплоть до этого момента почти никто из ИИ-пехоты не взъерошил перья, но затем Сирл шагает еще на один аргумент вперед Способность выполнять такие функции, как перевод по сложным правилам, не означает, что тот, кто это делает, понимает значение "выходных данных" Человеческий разум обладает произвольностью (см Searl, 1983), которая, согласно этому автору, определяется как свойство мысленных состояний и событий, направляющее их на объекты и ситуации в окружающем мире К таковым относятся убеждения, страхи, желания и намерения Независимо от того, насколько "неотличимо" поддельное мышление от "настоящего" (человеческого), они не есть одно и то же, поскольку у мыслящего человека есть намерения и поскольку между этими двумя "мыслящими" есть физические различия одного сделали органическим способом, а второго — электронным
Опроверже-Компьютерные ученые немедленно выдвинули возражения против голово-ние "китой-ломки Сирла,— прежде всего с позиций семантики термины "произволь-ской коми а-ность", "понимание", "мышление" употребляются им без четких операци-ты» овальных референтов, в качестве возражения был приведен такой пример
если бы человек в этой "китайской комнате" выполнял описанные функции, то он (или система) действительно достиг бы как минимум некоторого уровня понимания Кроме того, аргументы Сирла отклонялись на основании 'приведения к абсурду' если довести ситуацию до логического конца, то оказалось бы возможным создать робота, в каждой своей детали идентичного мыслящему человеку, и все же последний был бы способен к "пониманию" и "произвольности", а первый нет Наконец, некоторые специалисты по ИИ полагают, что "понимание" и "произвольность" вызываются конкретными материальными свойствами Пилишин (Pylyshyn, 1980) сатирически замечает, что возможно произвольность — это такое вещество, которое выделяется человеческим мозгом, он предлагает свою собственную загадку
" если бы все больше и больше клеток вашего мозга заменялись интегральными микросхемами, запрограммированными так, чтобы их, характеристики входа-выхода были идентичны заменяемому элементу, вы по всей вероятности сохранили бы способность говорить точно так же, как и сейчас, за исключением того, что постепенно перестали бы что-либо под этим иметь в виду То, что мы, сторонние наблюдатели, все еще принимали бы за слова, для вас стало бы просто некоторым шумом, который заставляют вас издавать ваши микросхемы" (с 442)
Мышление и интеллект - естественный и искусственный 500
Колш1»1ат*ризо0сш1*0*
t:
ж
ii
Том Харрингтон, Дениза Квон
Подобно Нарциссу, восхищавшемуся своей собственной красотой, человек с тоской глядит в нечто вроде интеллектуального увеличительного стекла и отходит со словами "Да, ты действительно самый разумный из них всех'" Наш мозг в 10 биллионов раз менее эффективен энергетически, чем теоретически он мог бы быть, и его клетки реагируют в тысячи раз медленнее, чем ячейки цифрового компьютера, и тем не менее он продолжает находиться под нарциссическим впечатлением от своей собственной работы, обычно относя все недостатки на счет своей огромной сложности В 1968 году мозг Джона Кемени, заметивг что между ним самим и машиной нет суще ственной разницы, сделал утверждение, показавшееся в то время здравым "Даже на базе транзисторов конструктивные трудности едва ли позволят сделать4 машину более, чем из миллиона частей Так что мы можем свободно сказать, что человеческий мозг надолго останется примерно в 10000 раз более сложным, чем самые сложные машины "
С тех пор компьютеры развились невероятно Но мозг по генетическим причинам застрял на обочине интеллектуальной дороги, поскольку он мутирует медленно К счастью, наши когнитивные способности не застряли вместе с ним Каждый день мы встраиваем в компьютеры новые мутации, и, навязывая им наше собственное направление естественного отбора, развиваем "мыслительную" силу человека
Как может компьютер практически конкурировать с нами? Лучше сначала спросить, а смог бы компьютер хранить и обрабатывать то количество информации, какое мы сами воспринимаем Насколько это много? Информацию, воспринимаемую нами за одно мгновение текущей зрительной сцены, можно оценить, исходя из интенсивности, с которой этот мир стимулирует каждую из ваших 250,000,000 палочек и колбочек При наличии 100 возможных уровней интенсивности стимуляции каждой из них мы получим достаточно верное повторение воспринимаемого мира, так что для каждой колбочки или палочки нам пришлось бы записать по две цифры Это составило бы 2x250,000,000 единиц информации — те средняя ванная комната, заполненная перфокартами Обновляя стимульную зрительную сцену 100 раз в секунду на протяжении ста лет жизни, мы бы оказались затопленными в таком количестве зрительной информации, какого хватило бы, чтобы заполнить перфокартами куб с ребром в 34 километра Компьютерная память такого объема оказалась бы без-
надежной, как это случилось в 1968 году, но тусклый свет надежды идет к нам из 1926 года, когда Эмануэль Голдберг смог записать на микрофильме буквы величиной в один микрон, такая плотность означает, что на большой почтовой марке можно расположить 50 Библий При такой записи информацию наш столетний опыт зрительного восприятия уместился бы в кубе из марок с ребром в 20 метров Объемные голограммы имеют более легкий доступ и гораздо большую плотность Но если бы мы могли хранить информацию так, как это делает природа, jam зрительный опыт за 100 лет смог бы уместиться в кубике с ребром в 1мм — с булавочную головку Генетическая информация, необходимая для воссоздания любого человека, живущего в Соединенных Штатах, и хранимая в виде 4-битового РНК-кода уместилась бы в слое над одним ногтем
В таком случае хранение информации, превышающей по объему все, что когда-либо мог собрать мозг, кажется легким, но как быть с обработкой, воспроизведением и передачей? Такие компоненты, как макромолекулярные транзисторы и оптические компьютеры на трансфазерах и технология производства оптики с сопряжением фазы скоро превзойдут все, что имеется сегодня Компьютеры будут более плотными, и в них, возможно, не будет проводов, а только световые лучи, которые могут проходить друг сквозь друга И они будут способны обрабатывать целые поля оптической информации и мгновенно формировать с ней ассоциации, избегая в некотором смысле необходимости в интерактивных соединителях, имеющихся в мозге Такие компьютеры легко превзойдут мозг
Как насчет передачи информации? Новые оптические зеркала с сопряжением фазы позволят нам посылать трехмерные набитые информацией голограммы по отдельным стеклянным волокнам Физики говорят, что по одному стеклянному волокну теоретически возможно транслировать продолжительный зрительный входной сигнал от примерно 10000 абонентов
Видимо, в неполноценности мозга нет сомнений Даже по сравнению с существующими машинами он по многим параметрам выглядит, как игрушка Нам только нужно побольше людей (и компьютеров), чтобы писать гибкие и тщательно разработанные программы, или сделать специальные компьютеры, которые сами были бы своей программой
Поэтому спросим, а хорошо ли умеет мозгдумать? Если мы нарисуем длинную ось, отмеряющую сложность мышления, то похоже, что мы все-таки сможем поместить себя на ней хоть на бит повыше абака Может ли абак мыслить? Наверно, нам лучше думать, что да
Этот спор далек от завершения, и некоторые, видимо, находят определенную ценность в его философской глубине. Однако, для меня этот спор не разрешен (на самом деле, он, вероятно, неразрешим!). Кроме того, оба лагеря ужесточили свои позиции и выдвигают скорее аргументы веры, чем разума. Для такой книги, как эта, его важность двояка: во-первых, он заставляет читателя глубоко задуматься о том "человеческом", что заключено в человеческом познании. Во-вторых, в связи с этим спором встает вопрос, до какого предела ИИ может имитировать человеческий интеллект. Страсти, разгоревшиеся вокруг "теста Тюринга" и "китайской комнаты" у обеих сторон, отражают сильную заинтересованность современных философов и специалистов по ИИ в отношении электронного джина, выпущенного из бутылки.