Разберем индукцию как прием эмпирического познания.

Обоснование индукции как метода связано с именем Аристотеля.Для Аристотеля была характерна так называемая интуитивная индукция. Это одно из первых представлений об индукции среди многих её формулировок.

Интуитивная индукция – это мыслительный процесс, посредством которого из некоторого множества случаев выделяется общее свойство или отношение и отождествляется с каждым отдельным случаем.

Многочисленные примеры подобного рода индукции, применяемой как в обыденной жизни, так и в научной практике, математике приведены в книге известного математика Д. Пойа. (Интуиция //Д. Пойа. Математика и правдоподобные рассуждения. - М., 1957). Например, наблюдая некоторые числа и их комбинации, можно натолкнуться на соотношения

3+7=10, 3+17=20, 13+17=30 и т. д.

Здесь обнаруживается сходство в получении числа, кратного десяти.

Или другой пример: 6=3+3, 8=3+5, 10=3+7=5+5, 12=5+7 и т. д.

Очевидно, что мы сталкиваемся с фактом, что сумма нечетных простых чисел есть всегда четное число.

Эти утверждения получены в ходе наблюдения и сравнения арифметических операций. Продемонстрированные примеры индукции целесообразно назвать интуитивной, так как сам процесс вывода не является логическим выводом в точном смысле этого слова.Здесь мы не имеем дела с рассуждением, которое разлагалось бы на посылки и заключения, а просто с восприятием, «схватыванием» отношений и общих свойств непосредственно. Мы не прилагаем никаких логических правил, а догадываемся. Нас просто озаряет понимание некой сути. Такая индукция важна в научном познании, но она не является предметом формальной логики, а изучается теорией познания и психологией творчества. Более того, подобной индукцией мы пользуемся на обыденном уровне познания постоянно.

Как создатель традиционной логики Аристотель называет индукцией и другую процедуру, а именно:установления общего предложения путем перечисления в форме единичных предложений всех случаев, которые подводимы под него. Если мы смогли перечислить все случаи, а это имеет место, когда число случаев ограничено, то мы имеем дело с полной индукцией. В данном случае у Аристотеля процедура выведения общего предложения фактически является случаем дедуктивного вывода.

Когда же число случаев не ограничено, т.е. практически бесконечно, мы имеем дело с неполной индукцией. Она представляет собой эмпирическую процедуру и является индукцией в собственном смысле слова. Это процедура установления общего предложения на основании нескольких отдельных случаев, в которых наблюдалось определенное свойство, характерное для всех возможных случаев, сходных с наблюдаемым, называется индукцией через простое перечисление.Это и есть популярная или традиционная индукция.

Главной проблемой полной индукции является вопрос о том, насколько основательно, правомерно такое перенесение знания с отдельных известных нам случаев, перечисляемых в отдельных предложениях, на все возможные и даже еще неизвестные нам случаи.

Это есть серьезная проблема научной методологии и обсуждается она в философии и логике со времен Аристотеля. Это так называемая проблема индукции. Она камень преткновения для метафизически мыслящих методологов.

В реальной научной практике популярная индукция применяется абсолютно самостоятельно крайне редко. Чаще всего она используется, во-первых, наряду с более совершенными формами метода индукции и, во-вторых, в единстве с дедуктивными рассуждениями и другими формами теоретического мышления, которые повышают правдоподобность знания, полученного этим способом.

Когда в процессе индукции осуществляется перенос, экстраполяция вывода, справедливого для конечного числа известных членов класса, на все члены этого класса, то основанием для такого переноса является абстракция отождествления, состоящая в предположении, что в данном отношении все члены этого класса тождественны. Такая абстракция является либо допущением, гипотезой, и тогда индукция выступает как способ подтверждения этой гипотезы, либо абстракция покоится на каких-то других теоретических предпосылках. В любом случае индукция так или иначе связана с различными формами теоретических рассуждений, дедукцией.

В неизменном виде индукция через простое перечисление просуществовала вплоть до XVII века, когда Ф. Бэконом была сделана попытка усовершенствовать метод Аристотеля в известной работе «Новый Органон» (1620 г.). Ф. Бэкон писал: «Наведение, которое происходит путем простого перечисления, есть детская вещь, оно дает шаткие заключения и подвергается опасности со стороны противоречащих частностей, вынося решения большей частью на основании меньшего, чем следует, количества фактов и только для тех, которые имеются налицо». Бэкон обращает внимание и на психологическую сторону ошибочности заключений. Он пишет: «Люди обычно судят о новых вещах по примеру старых, следуя своему воображению, которое предубежденно и запятнано ими. Этот род суждения обманчив, поскольку многое из того, что ищут у источников вещей, не течет по привычным ручейкам».

Индукция, которую предложил Ф. Бэкон, и правила, которые он сформулировал в своих знаменитых таблицах «представления примеров разуму», по его мнению, свободна от субъективных ошибок, а применение его способа индукции гарантирует получение истинного знания. Он утверждает: «Наш же путь открытия таков, что он немногое оставляет остроте и силе дарований. Но почти уравнивает их. Подобно тому, как для проведения прямой линии или описания совершенного круга много значит твердость, умелость и испытанность руки, если действовать только рукой, мало или ничего не значит, если пользоваться циркулем и линейкой; так обстоит дело и с нашим методом».

Демонстрируя несостоятельность индукции через простое перечисление, Бертран Рассел приводит такую притчу. Жил однажды чиновник по переписи, который должен был переписать фамилии всех домовладельцев в каком-то уэльском селе. Первый, которого он спросил, назвался УильмомУильмсом, также назвался второй, третий и т.д. Наконец, чиновник сказал себе: «Это утомительно, очевидно, все они Уильямы Уильямсы. Так я и запишу их всех и буду свободен». Но он ошибся, так как был все же один человек по имени Джон Джонс. Это показывает, что мы можем прийти к неправильным выводам, если слишком безоговорочно поверим в индукцию через простое перечисление».

Назвав неполную индукцию детской, Бэкон предложил усовершенствованный вид индукции, которая называет элиминативной (исключающей) индукцией. Общим основанием методологии Бэкона было «рассечение» вещей и сложных явлений на части или элементарные «природы», а затем обнаружение «форм» этих «природ». В данном случае под «формой» Бэкон понимает выяснение сущности, причин отдельных вещей и явлений. Процедура соединения и разъединения в теории познания Бэкона приобретает вид элиминативной индукции.

С точки зрения Бэкона, главной причиной значительного несовершенства неполной индукции Аристотеля было отсутствие внимания к отрицательным случаям. Полученные в результате эмпирических исследований отрицательные доводы должны быть вплетены в логическую схему индуктивного рассуждения.

Другим недостатком неполной индукции, по-Бэкону, явилось ограничение её обобщенным описанием явлений и отсутствие объяснения сущности явлений. Бэкон, критикуя неполную индукцию, обратил внимание на существенный момент познавательного процесса: выводы, полученные только на основании подтверждающих фактов, не вполне надежны, если не доказана невозможность появления опровергающих фактов.

Бэконовская индукция основывается на признании:

  1. материального единства природы;
  2. единообразия ее действий;
  3. всеобщей причинной связи.

Опираясь на эти общие мировоззренческие посылки, Бэкон дополняет их ещё двумя следующими:

  1. у каждой наличной «природы» непременно имеется вызывающая ее форма;
  2. при реальном наличии данной «формы» непременно появляется свойственная ей «природа».

Вне всякого сомнения Бэкон считал, что одна и та же «форма» вызывает не одну, а несколько присущих ей различных «природ». Но мы не найдем у него ясного ответа на вопрос о том, может ли абсолютно одна и та же «природа» вызываться двумя разными «формами». Но для упрощения индукции он должен был принять тезис: тождественных «природ» от разных форм нет, одна «природа» – одна «форма».

По своему механизму проведения индукция Бэкона строится из трех таблиц: таблица присутствия, таблица отсутствия и таблица степеней сравнения. В «Новом Органоне» он демонстрирует, как надо раскрывать природу теплоты, которая, как он предполагал, состоит из быстрых и беспорядочных движений мельчайших частиц тел. Поэтому первая таблица включает в себя перечень горячих тел, вторая – холодных, а третья – тел с различной степенью тепла. Он надеялся, что таблицы покажут, что некоторое качество всегда присуще только горячим телам и отсутствует у холодных, а в телах с различной степенью тепла оно присутствует с различной степенью. Применяя этот метод, он надеялся установить общие законы природы.

Все три таблицы обрабатываются последовательно. Сначала из первых двух «отбраковываются» свойства, которые не могут быть искомой «формой». Для продолжения процесса элиминации или подтверждения ее, если уже выбрана искомая форма, используют третью таблицу. Она должна показать, что искомая форма, например, А, коррелируется с «природой» объекта «а». Так, если А возрастает, то и «а» тоже возрастает, если А не меняется, то сохраняет свои значения «а». Другими словами, таблица должна установить или подтвердить подобные соответствия. Обязательным этапом бэконовской индукции является проверка при помощи опыта полученного закона.

Затем из ряда законов малой степени общности Бэкон надеялся вывести законы второй степени общности. Предполагаемый новый закон тоже должен быть испытан применительно к новым условиям. Если он действует в этих условиях, то, считает Бэкон, закон подтвержден, а значит, истинен.

В итоге своих поисков «формы» тепла Бэкон пришел к выводу: «тепло – это движение мелких частиц, распирающее в стороны и идущее изнутри вовне и несколько вверх». Первая половина найденного решения в общем верна, а вторая сужает и до некоторой степени обесценивает первую. Первая половина утверждения позволяла делать верные утверждения, например, признать, что трение вызывает тепло, но одновременно, давала возможность и произвольным утверждениям, например, говорить, что мех греет, потому что образующие его волосы движутся.

Что касается второй половины вывода, то она неприменима к объяснению многих явлений, например, солнечного тепла. Эти промахи говорят скорее о том, что Бэкон обязан своим открытием не столько индукции, сколько собственной интуиции.

1). Первым недостаткоминдукции Бэкона было то, чтоона строилась на допущении, что искомую «форму» можно точно распознать по ее чувственному обнаружению в явлениях. Другими словами, сущность оказывалась сопутствующей явлению горизонтально, а не вертикально. Она рассматривалась как одно из наблюдаемых свойств непосредственно. Здесь коренится проблема. Сущности вовсе не возбраняется быть похожей на свои проявления, и явление движения частиц, конечно, «похоже» на свою сущность, т.е. на реальное движение частиц, хотя последнее воспринимается как макродвижение, тогда как на деле оно есть микродвижение, человеком не улавливаемое. С другой стороны, следствию не обязательно быть похожим на свою причину: ощущаемая теплота не похожа на скрытое движение частиц. Так намечается проблема сходства и несходства.

Проблема сходства и несходства «природы» как объективного явления с ее сущностью, т.е. «формой», переплеталась у Бэкона с аналогичной проблемой сходства и несходства «природы» как субъективного ощущения с самой объективной «природой». Похоже ли ощущение желтизны на саму желтизну, а та – на свою сущность – «форму» желтизны? Какие «природы» движения похожи на свою «форму», а какие нет?

Спустя полвека Локк дал свой ответ на эти вопросы концепцией первичных и вторичных качеств. Рассматривая проблему ощущений первичных и вторичных качеств, он пришел к выводу, что первичные из них похожи на свои причины во внешних телах, а вторичные не похожи. Первичные качества Локка соответствуют «формам» Бэкона, а вторичные качества не соответствуют тем «природам», которые не являются непосредственным обнаружением «форм».

  1. Вторым недостаткомметода индукции Бэкона была его односторонность. Философ недооценивал математику за недостаточную экспериментальность и в этой связи дедуктивные выводы. Одновременно Бэкон значительно преувеличивал роль индукции, считая ее главным средством научного познания природы. Такое неоправданное расширенное понимание роли индукции в научном познании получило названиевсеиндуктивизма. Его несостоятельность обусловлена тем, что индукция рассматривается изолированно от других методов познания и превращается в единственное, универсальное средство познавательного процесса.
  2. Третий недостатоксостоял в том, что при одностороннем индуктивном анализе известного сложного явления уничтожается целостное единство. Те качества и отношения, которые свойственны были этому сложному целому, при анализе больше не существуют в этих раздробленных «кусках».

Формулировка правил индукции, предложенная Ф. Бэконом, просуществовала более двухсот лет. Дж. Ст. Миллюпринадлежит заслуга их дальнейшей разработки и некоторой формализации. Милль сформулировал пять правил. Суть их в следующем. Будем считать ради простоты, что имеются два класса явлений, каждый из которых состоит из трех элементов – А, В, С и а, в, с, и что между этими элементами есть некоторая зависимость, например, элемент одного класса детерминирует элемент другого класса. Требуется найти эту зависимость, имеющую объективный, всеобщий характер, при условии, что нет никаких других неучитываемых воздействий. Это можно, согласно Миллю, сделать с помощью следующих методов, получая каждый раз заключение, имеющее вероятный характер.

  1. Метод сходства. Его суть: «а» возникает как при АВ, так и при АС.Отсюда следует, что А достаточно, чтобы детерминировать «а» (т.е. быть его причиной, достаточным условием, основанием).
  2. Метод различия:«а» возникает при АВС, но не возникает при ВС, где А отсутствует. Отсюда следует вывод, что А необходимо, чтобы возникло «а» (т.е. является причиной «а»).
  3. Соединенный метод сходства и различия:«а»возникает при АВ и при АС,но не возникает при ВС.Отсюда следует, что А необходимо и достаточно для детерминации «а» (т.е. является его причиной).
  4. Метод остатков.Известно на основании прошлого опыта, что В и «в» и С и «с» находятся между собой в необходимой причинной связи, т.е. эта связь имеет характер общего закона. Тогда, если в новом опыте при АВС появляется «авс», то А является причиной или достаточным и необходимым условием «а». Следует заметить, что метод остатков является не чисто индуктивным рассуждением, так как он опирается на посылки, имеющие характер универсальных, номологических предложений.
  5. Метод сопутствующих изменений.Если «а» изменяется при изменении А, но не изменяется при изменении В и С, то А является причиной или же необходимым и достаточным условием «а».

Следует ещё раз подчеркнуть, что бэконо-миллевская форма индукции неразрывно связана с определенным философским мировоззрением, философской онтологией, согласно которой в объективном мире не только существует взаимная связь явлений, их взаимная причинная обусловленность, но связь явлений имеет однозначно определенный, «жесткий» характер. Другими словами, философскими предпосылками этих методов являются принцип объективности причинной связи и принцип однозначной детерминации. Первый является общим для всякого материализма, второй характерен для материализма механистического – это так называемый лапласовский детерминизм.

В свете современных представлений о вероятностном характере законов внешнего мира, о диалектической связи между необходимостью и случайностью, диалектической взаимосвязи между причинами и следствиями и т. д. методы Милля (особенно первые четыре) обнаруживают свой ограниченный характер. Применимость их возможна лишь в редких и притом весьма простых случаях. Более широкое применение имеет метод сопутствующих изменений, развитие и совершенствование которого связано с развитием статистических методов.

Хотя метод индукции Милля более разработан, чем предложенный Бэконом, но он уступает бэконовской трактовке по ряду моментов.

Во-первых, Бэкон был уверен, что истинное знание, т.е. познание причин, вполне достижимо при помощи его метода, а Милль был агностик, отрицающий возможность постижения причин явлений, сущности вообще.

Во-вторых, три индуктивных метода Милля действуют только порознь, тогда как таблицы Бэкона находятся в тесном и необходимом взаимодействии.

По мере развития науки появляется новый тип объектов, где исследуются совокупности частиц, событий, вещей вместо небольшого числа легко идентифицируемых объектов. Подобные массовые явления все больше включались в сферу исследования таких наук, как физика, биология, политическая экономия, социология.

Для изучения массовых явлений ранее применявшиеся методы оказались непригодными, поэтому были разработаны новые способы изучения, обобщения, группировки и предсказания, получившие название статистических методов.

Дедукция(от лат. deduction - выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному. В более специальном смысле термин «дедукция» обозначает процесс логического вывода, т.е. перехода по тем или иным правилам логики от некоторых данных предложений (посылок) к их следствиям (заключениям). Дедукцией также называют общую теорию построения правильных выводов (умозаключений).

Изучение дедукции составляет главную задачу логики – иногда формальную логику даже определяют как теорию дедукции, хотя дедукция изучается и теорией познания, психологией творчеств.

Термин «дедукция» появился в средние века и введён Боэцием. Но понятие дедукции как доказательства какого-либо предложения посредством силлогизма фигурирует уже у Аристотеля («Первая аналитика»). Примером дедукции как силлогизма будет следующий вывод.

Первая посылка: карась – рыба;

вторая посылка: карась живет в воде;

вывод (умозаключение): рыба живет в воде.

В средние века господствовала силлогистическая дедукция, исходные посылки которой черпались из священных текстов.

В Новое время заслуга преобразования дедукции принадлежит Р. Декарту (1596-1650). Он критиковал средневековую схоластику за ее метод дедукции и считал этот метод не научным, а относящимся к области риторики. Вместо средневековой дедукции Декарт предложил точный математизированный способ движения от самоочевидного и простого к производному и сложному.

Свои представления о методе Р. Декарт изложил в работе «Рассуждение о методе», «Правила для руководства ума». Им предлагаются четыре правила.

Первое правило.Принимать за истинное все то, что воспринимается ясно и отчетливо и не дает повода к какому-либо сомнению, т.е. вполне самоочевидно. Это указание на интуицию как исходный элемент познания и рационалистический критерий истины. Декарт верил в безошибочность действия самой интуиции. Ошибки, по его мнению, проистекают от свободной воли человека, способной вызвать произвол и путаницу в мыслях, но никак от интуиции разума. Последняя свободна от какого бы то ни было субъективизма, потому что отчетливо (непосредственно) осознает то, что отчетливо (просто) в самом познаваемом предмете.

Интуиция есть осознание «всплывших» в разуме истин и их соотношений, и в этом смысле – высший вид интеллектуального познания. Она тождественна первичным истинам, называемым Декартом врожденными. В качестве критерия истины интуиция есть состояние умственной самоочевидности. С этих самоочевидных истин начинается процесс дедукции.

Второе правило.Делить каждую сложную вещь на более простые составляющие, не поддающиеся дальнейшему делению умом на части. В ходе деления желательно дойти до самых простых, ясных и самоочевидных вещей, т.е. до того, что непосредственно дается интуицией. Иначе говоря, такой анализ имеет целью открыть исходные элементы знания.

Здесь надо отметить, что анализ, о котором говорит Декарт, не совпадает с анализом, о котором говорил Бэкон. Бэкон предлагал разлагать предметы вещественного мира на «натуры» и «формы», а Декарт обращает внимание на разделение проблем на частные вопросы.

Второе правило метода Декарта вело к двум, одинаково важным для научно-исследовательской практики XVIII века, результатам:

1) в итоге анализа исследователь располагает объектами, которые поддаются уже эмпирическому рассмотрению;

2) философ-теоретик выявляет всеобщие и потому наиболее простые аксиомы знания о действительности, которые могут уже послужить началом дедуктивного познавательного движения.

Таким образом, декартов анализ предшествует дедукции как подготавливающий ее этап, но от нее отличный. Анализ здесь сближается с понятием «индукция».

Выявляемые анализирующей индукцией Декарта исходные аксиомы оказываются по своему содержанию уже не только прежде неосознававшимися элементарными интуициями, но и искомыми, предельно общими характеристиками вещей, которые в элементарных интуициях являются «соучастниками» знания, но в чистом виде выделены ещё не были.

Третье правило.В познании мыслью следует идти от простейших, т.е. элементарных и наиболее для нас доступных вещей к вещам более сложным и, соответственно, трудным для понимания. Здесь дедукция выражается в выведении общих положений из других и конструировании одних вещей из других.

Обнаружение истин соответствует дедукции, оперирующей затем ими для выведения истин производных, а выявление элементарных вещей служит началом последующего конструирования вещей сложных, а найденная истина переходит к истине следующей ещё неизвестной. Поэтому собственно мыслительная дедукция Декарта приобретает конструктивные черты, свойственные в зародыше так называемой математической индукции. Последнюю он и предвосхищает, оказываясь здесь предшественником Лейбница.

Четвертое правило.Оно состоит в энумерации, что предполагает осуществлять полные перечисления, обзоры, не упуская ничего из внимания. В самом общем смысле это правило ориентирует на достижение полноты знания. Оно предполагает,

во-первых, создание как можно более полной классификации;

во-вторых, приближение к максимальной полноте рассмотрения приводит надежность (убедительность) к очевидности, т.е. индукцию – к дедукции и далее к интуиции. Сейчас уже признано, что полная индукция есть частный случай дедукции;

в-третьих, энумерация есть требование полноты, т.е. точности и корректности самой дедукции. Дедуктивное рассуждение рушится, если в ходе его перескакивают через промежуточные положения, которые ещё надо вывести или доказать.

В целом по замыслу Декарта его метод был дедуктивным, и в этой его направленности были подчинены как его общая архитектоника, так и содержание отдельных правил. Также следует отметить, что в дедукции Декарта скрыто присутствие индукции.

В науке Нового времени Декарт был пропагандистом дедуктивного метода познания потому, что он был вдохновлен своими достижениями в области математики. Действительно, в математике дедуктивный метод имеет особое значение. Можно даже сказать, что математика является единственной собственно дедуктивной наукой. Но получение новых знаний посредством дедукции существует во всех естественных науках.

В настоящее время в современной науке чаще всего действует гипотетико-дедуктивный метод.Это метод рассуждения, основанный на выведении (дедукции) заключений из гипотез и др. посылок, истинное значение которых неизвестно. Поэтому гипотетико-дедуктивный метод получает лишь вероятностное знание. В зависимости от типа посылок гипотетико-дедуктивные рассуждения можно разделить на три основные группы:

1) наиболее многочисленная группа рассуждений, где посылки - гипотезы и эмпирические обобщения;

2) посылки, состоящие из утверждений, противоречащих либо точно установленным фактам, либо теоретическим принципам. Выдвигая такие предположения как посылки, можно из них вывести следствия, противоречащие известным фактам, и на этом основании убедить вложности предположения;

3) посылками служат утверждения, противоречащие принятым мнениям и убеждениям.

Гипотетико-дедуктивные рассуждения анализировались ещё в рамках античной диалектики. Пример тому Сократ, который в ходе своих бесед ставил задачу убедить противника либо отказаться от своего тезиса, либо уточнить его посредством вывода из него следствий, противоречащих фактам.

В научном познании гипотетико-дедуктивный метод получил развитие в XVII-XVIII вв., когда значительные успехи были достигнуты в области механики земных и небесных тел. Первые попытки использовать этот метод в механике были сделаны Галилеем и Ньютоном. Работу Ньютона «Математические начала натуральной философии» можно рассматривать как гипотетико-дедуктивную систему механики, посылками в которой служат основные законы движения. Созданный Ньютоном метод принципов оказал огромное влияние на развитие точного естествознания.

С логической точки зрения гипотетико-дедуктивная система представляет собой иерархию гипотез, степень абстрактности и общности которых увеличивается по мере удаления их от эмпирического базиса. На самом верху располагаются гипотезы, имеющие наиболее общий характер и поэтому обладающие наибольшей логической силой. Из них как посылок выводятся гипотезы более низкого уровня. На самом низшем уровне системы находятся гипотезы, которые можно сопоставить с эмпирической действительностью.

Разновидностью гипотетико-дедуктивного метода можно считать математическую гипотезу, которая используется как важнейшее эвристическое средство для открытия закономерностей в естествознании. Обычно в качестве гипотез здесь выступают некоторые уравнения, представляющие модификацию ранее известных и проверенных соотношений. Изменяя эти соотношения, составляют новое уравнение, выражающее гипотезу, которая относится к неисследованным явлениям. В процессе научного исследования наиболее трудная задача состоит в открытии и формулировании тех принципов и гипотез, которые служат основой для всех дальнейших выводов. Гипотетико-дедуктивный метод играет в этом процессе вспомогательную роль, поскольку с его помощью не выдвигаются новые гипотезы, а только проверяются вытекающие из них следствия, которые тем самым контролируют процесс исследования.

Близок к гипотетико-дедуктивному методу аксиоматический метод.Это способ построения научной теории, при котором в её основу кладутся некоторые исходные положения (суждения) – аксиомы, или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем, посредством доказательства. Построение науки на основе аксиоматического метода обычно называют дедуктивным. Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, образованных из числа ранее введенных понятий. В той или иной мере дедуктивные доказательства, характерные для аксиоматического метода, принимаются во многих науках, однако главной областью его приложения являются математика, логика, а также некоторые разделы физики.

ОТВЕТ №12.МЕТОДЫ МОДЕЛИРОВАНИЯ В НАУЧНЫХ ИССЛЕДОВАНИЯХ

Моделирование – метод исследования, при котором изучение объекта (оригинала) осуществляется посредством создания и исследования его копии (модели), замещающей оригинал с определенных сторон, интересующих исследователя.

Суть данного метода состоит в том, что сконструированные в ходе идеализации теоретические (идеализированные) объекты образуют теоретическую (идеализированную) модель (схему).

В философско-методологической литературе наиболее четкое, ставшее общепринятым определение теоретической модели предложил В.А. Штофф: “Под моделью понимается такая мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте”. В этом определении зафиксированы сущностные черты метода моделирования:

1) наличие объекта-посредника, замещающего оригинал;

2) объект-посредник должен находиться с оригиналом в отношении отображения, т.е. существенного сходства;

3) изучение объекта-посредника должно быть эвристически плодотворно: оно должно приносить новую информацию об исходном объекте.

Возможность моделирования, т.е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определенном смысле воспроизводит какие-либо его стороны.

Метод моделирования применяется в тех ситуациях, когда по какой-либо причине исследователю предпочтительно заменить непосредственное изучение исходного объекта его моделью. Это ситуации, в которых прямое манипулирование с оригиналом либо крайне затруднительно, либо неэффективно, либо вообще невозможно. Такие случаи достаточно распространены в современной науке. Примерами ситуаций, в которых показано применение моделирования, могут служить:

1) многие виды медико-биологических исследований, объектом которых должен служить человек, что недопустимо по этическим причинам;

2) технические испытания различных дорогостоящих объектов: судов, самолетов, зданий и т.п. (которые вполне могут быть заменены моделями-макетами, воспроизведением отдельных частей);

3) недоступные во времени или в пространстве объекты и процессы (удаленные космические тела, процессы далекого прошлого);

4) отсутствие возможностей изучить объект целиком (массовые явления, которые подлежат изучению лишь на выборочных примерах).

Процесс моделирования включает в себя следующие этапы:

1) Построение модели (целью этого этапа является создание условий для полноценного замещенияоригинала объектом-посредником, воспроизводящим его необходимые параметры, при осознании невозможности или нецелесообразности прямого изучения объекта).

2) Изучение модели (характер и специфика изучения зависит от необходимости решения конкретной задачи; здесь может происходить мысленный (модельный) эксперимент, описание, измерение характеристик модели; итогом выступает получение требуемой информации о модели).

3) Экстраполяция – перенос полученных данных на область знаний об исходном объекте, т.е. интерпретация полученных знаний о модели, оценка их приемлемости и непосредственное применение их к оригиналу, позволяющее в случае успеха решить исходную познавательную задачу.

Необходимо выделить основные виды моделирования:

1) Предметное моделирование – моделирование, в ходе которого исследование ведется на модели, воспроизводящей определенные физические, геометрические и пр. характеристики оригинала. Данный вид моделирования имеет несколько разновидностей:

- макетное моделирование – представление объекта в наглядной форме и обычно в уменьшенном размере, передающем пространственные свойства объекта, его внешний вид, соотношение и взаимосвязь частей (макеты, используемые как пособия в музеях, в учебных заведениях и т.п.);

- физическое моделирование – построение моделей для экспериментального изучения различных физических явлений, основанных на их физическом подобии; метод состоит в создании физической модели явления в уменьшенных масштабах и проведении экспериментов на этой модели, выводы и данные которых распространяются затем на явление в реальных масштабах (некоторые примеры применения метода физического моделирования: гидродинамические исследования на уменьшенных моделях кораблей, гидротехнических сооружений и т.п.; изучение устойчивости сложных конструкций, под воздействием сложных силовых нагрузок; измерение тепловых потоков и рассеивания тепла в устройствах и системах, работающих в условиях больших тепловых нагрузок; изучение стихийных явлений и их последствий).

- предметно-математическое моделирование – исследование физического процесса путем опытного изучения какого-либо явления иной физической природы, но описываемого теми же математическими соотношениями, что и моделируемый процесс (например, механические и электрические колебания относятся к различным формам движения материи, но они могут быть описаны одними и теми же дифференциальными уравнениями; поэтому с помощью изучения механических колебаний можно моделировать электрические процессы и наоборот).

2) Знаковое моделирование – моделирование, при котором моделями служат схемы, чертежи, формулы, предложения естественного или искусственного языка и т.д. Поскольку действия со знаками есть одновременно действия с некоторыми мыслями, постольку всякое знаковое моделирование по своей сути является моделированием мысленным. Знаковое моделирование, осуществляемое математическими или логическими средствами, называется абстрактно-математическим или абстрактно-логическим моделированием. Символический язык математики позволяет выражать свойства, стороны, отношения объектов самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование изучаемого объекта, выражается соответствующими уравнениями. Если в случае предметного моделирования новое знание получается в результате экспериментального исследования модели, то в случае математического моделирования опытное исследование заменяется логическим анализом и новое знание получается дедукцией из исходного описания модели.

ОТВЕТ №13.МЕТОДЫ МОДЕЛИРОВАНИЯ, СРАВНЕНИЯ, ОБОБЩЕНИЯ

Наши рекомендации