Ассоциативные правила. Алгоритм ограниченного перебора.
Ассоциативные правила позволяют находить закономерности между связанными событиями. Примером такого правила, служит утверждение, что покупатель, приобретающий "Хлеб", приобретет и "Молоко" с вероятностью 75%. Первый алгоритм поиска ассоциативных правил, называвшийся AIS [1] был разработан в 1993 году сотрудниками исследовательского центра IBM Almaden. С этой пионерской работы возрос интерес к ассоциативным правилам; на середину 90-х годов прошлого века пришелся пик исследовательских работ в этой области, и с тех пор каждый год появлялось по несколько алгоритмов.
Покажем на конкретном примере: "75% транзакций, содержащих хлеб, также содержат молоко. 3% от общего числа всех транзакций содержат оба товара". 75% - это достоверность (confidence) правила, 3% это поддержка (support), или "Хлеб" "Молоко" с вероятностью 75%.
Другими словами, целью анализа является установление следующих зависимостей: если в транзакции встретился некоторый набор элементов X, то на основании этого можно сделать вывод о том, что другой набор элементов Y также же должен появиться в этой транзакции. Установление таких зависимостей дает нам возможность находить очень простые и интуитивно понятные правила.
Алгоритмы поиска ассоциативных правил предназначены для нахождения всех правил X Y, причем поддержка и достоверность этих правил должны быть выше некоторых наперед определенных порогов, называемых соответственно минимальной поддержкой (minsupport) и минимальной достоверностью (minconfidence).
Задача нахождения ассоциативных правил разбивается на две подзадачи:
Нахождение всех наборов элементов, которые удовлетворяют порогу minsupport. Такие наборы элементов называются часто встречающимися.
Генерация правил из наборов элементов, найденных согласно п.1. с достоверностью, удовлетворяющей порогу minconfidence.
Один из первых алгоритмов, эффективно решающих подобный класс задач, – это алгоритм APriori [2]. Кроме этого алгоритма в последнее время был разработан ряд других алгоритмов: DHP[5], Partition[6], DIC[7] и другие.
Значения для параметров минимальная поддержка и минимальная достоверность выбираются таким образом, чтобы ограничить количество найденных правил. Если поддержка имеет большое значение, то алгоритмы будут находить правила, хорошо известные аналитикам или настолько очевидные, что нет никакого смысла проводить такой анализ. С другой стороны, низкое значение поддержки ведет к генерации огромного количества правил, что, конечно, требует существенных вычислительных ресурсов. Тем не менее, большинство интересных правил находится именно при низком значении порога поддержки. Хотя слишком низкое значение поддержки ведет к генерации статистически необоснованных правил.
Поиск ассоциативных правил совсем не тривиальная задача, как может показаться на первый взгляд. Одна из проблем - алгоритмическая сложность при нахождении часто встречающих наборов элементов, т.к. с ростом числа элементов в I (| I |) экспоненциально растет число потенциальных наборов элементов.
Алгоритмы ограниченного перебора были предложены в середине 60-х годов М.М. Бонгардом для поиска логических закономерностей в данных. С тех пор они продемонстрировали свою эффективность при решении множества задач из самых различных областей.
Эти алгоритмы вычисляют частоты комбинаций простых логических событий в подгруппах данных. Примеры простых логических событий: X = a; X < a; X > a; a < X < b и др., где X — какой либо параметр, "a" и "b" — константы. Ограничением служит длина комбинации простых логических событий (у М. Бонгарда она была равна 3). На основании анализа вычисленных частот делается заключение о полезности той или иной комбинации для установления ассоциации в данных, для классификации, прогнозирования и пр.
Наиболее ярким современным представителем этого подхода является система WizWhy предприятия WizSoft. Хотя автор системы Абрахам Мейдан не раскрывает специфику алгоритма, положенного в основу работы WizWhy, по результатам тщательного тестирования системы были сделаны выводы о наличии здесь ограниченного перебора (изучались результаты, зависимости времени их получения от числа анализируемых параметров и др.).
Автор WizWhy утверждает, что его система обнаруживает ВСЕ логические if-then правила в данных. На самом деле это, конечно, не так. Во-первых, максимальная длина комбинации в if-then правиле в системе WizWhy равна 6, и, во-вторых, с самого начала работы алгоритма производится эвристический поиск простых логических событий, на которых потом строится весь дальнейший анализ. Поняв эти особенности WizWhy, нетрудно было предложить простейшую тестовую задачу, которую система не смогла вообще решить. Другой момент — система выдает решение за приемлемое время только для сравнительно небольшой размерности данных.