Определение суммы углов многоугольника

1. Во время беседы об орнаментах, которая происхо­дила за ленчем, зашла речь о замкнутых геометрических фигурах, таких, как треугольники, прямоугольники, шес­тиугольники и другие многоугольники. В какой-то момент мой друг, художник, заметил: «Сумма углов всех таких

Определение суммы углов многоугольника - student2.ru

Рис. 135

фигур, конечно, должна быть одной и той же». Все рас­смеялись. Я оказался в удивительном положении. Я ска­зал: «Конечно же, сумма углов не одна и та же. В тре­угольнике она равна 180°, в прямоугольнике — 360°, в шестиугольнике — 720°». Но я чувствовал, что то утвер­ждение в каком-то смысле должно быть верным, оно за­трагивает какой-то важный момент. Это чувство не поки­дало меня. С одной стороны, было ясно, что сумма углов различных многоугольников не является одинаковой; с другой, я чувствовал, что не могу совсем оставить этот вопрос: ведь должен быть какой-то путь его решения. В этом был какой-то глубокий смысл, но я не знал, как его обнаружить. Невозможно было понять или даже по­чувствовать, в чем же именно заключается проблема. Навязчиво продолжал звучать вопрос: «Должно быть какое-то решение. В чем, черт возьми, дело?»

Другие гости, принимавшие участие в разговоре, не испытывали никакого беспокойства. Вопрос для них был

исчерпан, когда они узнали, что утверждение оказалось явно ложным.

На протяжении нескольких последующих часов, в те­чение которых я должен был заниматься другими веща­ми, проблема продолжала меня волновать. Затем она приобрела такую форму: «С одной стороны, есть А — сум­ма углов фигуры, с другой, В — связанная с замкнутостью завершенность фигуры. Между А и В есть только «и»,

Определение суммы углов многоугольника - student2.ru

Рис. 136

простая конъюнкция. Вот одно, вот другое. Что кроется за этим «и»-отношением? Что вызывает беспокойство? А и В должны быть как-то связаны друг с другом». Это не было ощущением противоречивости двух утверждений. Я задал себе вопрос: «Как можно это понять?»

2. На следующий день, когда я был занят другой ра­ботой, мне неожиданно пришла в голову следующая смут­ная, неопределенная и неясная идея: «Возьмем точку. Вокруг точки находится полное «угловое пространство» в 360° (один полный угол). Не должно ли происходить

Определение суммы углов многоугольника - student2.ru

Рис. 137

нечто подобное в случае замкнутой фигуры?» Но в то время я не мог уловить эту крайне туманную мысль.

Определение суммы углов многоугольника - student2.ru

Рис. 138

Прошло три дня. Что бы я ни делал, я все время ис­пытывал одно и то же сильное чувство, ощущение чего-то незаконченного, направленность на что-то такое, что я не мог понять. Несколько раз я чувствовал, что почти что могу сказать, в чем заключается причина беспокойства, от чего оно зависит, в каком направлении следует искать решение, но все было весьма неопределенно, так что я не мог это точно сформулировать. Много раз проблема казалась настолько ясной, что «необходимо было только записать ее», но, когда я пытался это сделать, мне это не удавалось, идея не формулировалась.

(Я обнаружил подобный ход развития во многих дей­ствительно великих интеллектуальных свершениях — то же чувство направленного напряжения при туманности, неопределенности реальной ситуации. В каком-то смысле форма, которую примет решение, «вертится на кончике языка», но ее невозможно ухватить. Это состояние может продолжаться в течение многих месяцев, сопровождаясь многодневной депрессией, и, хотя очевидно, что успех не­значителен, человек не может оставить проблему.)

3. Через два дня снова возник вопрос: «Если я возьму точку, то вокруг нее будет полный угол. Если я возьму прямую линию, то и вокруг нее существует угловое про­странство. Тогда, имея такую прямую линию, как я дол­жен действовать, чтобы получить замкнутую фигуру?

Определение суммы углов многоугольника - student2.ru

Рис. 139

Просто продолжая прямую линию? Вовсе нет. Я должен изогнуть линию в какой-то точке, если хочу получить замкнутую фигуру». Это быстро привело к идее: «Давай-

Определение суммы углов многоугольника - student2.ru

Рис. 140

те сначала рассмотрим сумму внешних углов». И что получится? Изгибаясь, угол в 180° разбивается на два «боковых угла», каждый из которых является прямым, и между ними появляется дельта (δ), «угол вращения». Важны именно дельты, вращение.

Определение суммы углов многоугольника - student2.ru Определение суммы углов многоугольника - student2.ru

Рис. 141 Рис. 142

И в целой фигуре по мере ее замыкания сумма дельт должна быть равна... полному обороту, углу в 360°, независимо от того, сколько у фигуры боковых сто­рон!

Каждая сторона имеет два внешних прямых угла, по одному на каждом конце. Может быть столько сторон и, следовательно, столько углов, сколько мы пожелаем; но в каждой фигуре углы вращения должны в сумме состав­лять полный угол. Это было «интуицией». В этот момент я чувствовал себя очень счастливым. Я чувствовал: «Те­перь я понимаю, в чем дело».

Что же, в сущности, произошло? Я начал с обычного представления об углах и о завершенности или замкну­тости. Я пытался понять, как возникает замкнутость; полный внешний угол при вершине превратился в два прямых угла плюс δ; я перестал связывать прямые углы с центральной идеей замкнутости, угол δ теперь рассмат­ривается вместе с другими δ в качестве угла, образующе­го полный угол вращения. При таком понимании углов важные углы δ неожиданно оказались связанными с зам­кнутостью фигуры. «И»-отношение А (сумма углов) и В (замкнутая завершенность) превратилось в согласован­ное, понятное, прозрачное единство. А и В больше не были просто рядоположенными отдельными вещами, те­перь они стали частями внутреннего единства. Замыка-

ние фигуры потребовало, чтобы δ дополнили друг друга до 360°. Этот процесс интеграции стал решением: то, что раньше было просто какой-то туманной и неудовлетвори­тельной суммой, теперь приобрело вполне определенную форму.

Мысль о том, что сумма углов δ равна 360°, возникла не как некое допустимое предположение, общее утвер­ждение или вера, а как «интуиция»: структура фигуры позволила увидеть внутреннюю связь между замкнуто­стью и всеми углами δ.

Вслед за этим быстро последовали следующие дейст­вия:

1) Было осознано, что должно произойти, если я шаг за шагом обойду фигуру, начиная с первой стороны пер­вой δ: для того чтобы замкнуть фигуру, я должен снова прийти к исходной прямой, совершив полный оборот. Сна­чала появилась общая идея 1; затем она была реализова­на в виде последовательности действий: одна сторона угла δ1 поворачивается на некоторый угол до совпадения с другой стороной, 2 параллельно переносится в положе­ние 3, поворачивается на угол δ2 и т. д. Чтобы обойти всю фигуру, осуществляя замыкание, и снова перейти в положение 1, сторона должна совершить полный оборот в 360°.

1 Позднее я нашел в одной книге замечание, принадлежащее физику Эрнсту Маху, который применил сходный метод. В ре­зультате суммирования б Мах тоже получил полный угол. Его

Определение суммы углов многоугольника - student2.ru

подход несколько отличается от нашего, угол разбивается не на R, δ, R, а на 2R, δ, что приводит к психологически иному способу образования полного угла.

Определение суммы углов многоугольника - student2.ru

Рис. 143

2) Сразу после этого возникла следующая мысль: до­пустим, что стороны фигуры стремятся к нулю. Что про­изойдет в таком случае? Расстояние между соседними

Определение суммы углов многоугольника - student2.ru

Рис. 144

параллельными сторонами боковых углов исчезнет, эти линии сольются в одну, совпадут также и вершины углов, и я получу именно ту картину, которая показана ниже: точку, которую окружает угловое пространство в 360°, построенное из углов d!

Определение суммы углов многоугольника - student2.ru

Рис. 146

3) Здесь возник следующий вопрос: а как обстоит дело с вогнутыми фигурами, которые не обладают ясной

структурой боковых углов с углом δ между ними? При такой постановке вопроса ответ ясен:

Определение суммы углов многоугольника - student2.ru

Рис. 147

это не имеет никакого значения; следует учесть, что сто­рона угла может поворачиваться в противоположную сто­рону, но все равно углы δ должны в сумме дать полный угол.

4) Обычный метод определения формулы для суммы внешних углов многоугольника теперь выглядел действи­тельно странным: «Сумма всех внутренних и полных внешних углов равна n · 4R...Σί+Σe = n · 4R. Следовательно, сумма внешних углов равна n4R минус сумма внутрен­них углов. Поскольку из обычного доказательства с помо­щью треугольников 1 известно, что сумма внутренних углов равна n · 2R—4R, мы получаем формулу Σе = n · 4R— — (n ··2R—4R). Произведя вычитание, получаем: п · 4R—

1 Обычно сумму углов треугольника — 180°, или 2R (два пря­мых угла), — получают, не учитывая того, что треугольник явля­ется замкнутой фигурой. Обычное доказательство для суммы внут­ренних углов многоугольника заключается в следующем: построй­те внутри многоугольника η треугольников так, чтобы каждая сто-

Определение суммы углов многоугольника - student2.ru

Рис. 148

рона многоугольника была основанием одного треугольника. Сум­ма углов всех треугольников равна n · 2R. Чтобы получить сумму внутренних углов многоугольника, вычтите из п · 2R смежные углы треугольников, которые располагаются вокруг средней точки. Сум­ма последних равна 4R. Следовательно: Σi = n ·2R—4R.

В этой формуле n · 2R есть результат вычитания n · 2R из n · 4R; 4R — это результат изменения знака члена —4R из формулы для внутренних углов. Величина чле­нов этой формулы не имеет прямого отношения к тому, как углы многоугольника замыкают фигуру 1. Меж­ду тем я понял, что в действительности представляет собой n · 2R.+4R: это сумма боковых углов, то есть пар прямых углов, прилегающих к каждой стороне (n · 2R) плюс полный оборот (4R), замыкание, осуществляемое углами δ.

5) В этот момент возникла любопытная мысль: поче­му мы называем треугольник именно треугольником? По­чему мы не называем его, например, четырехугольником или шестиугольником? Мы, конечно, можем его так назы-

Определение суммы углов многоугольника - student2.ru

Рис. 150

вать, поскольку фактически в каждой точке на его сторо­нах находится угол. Но мы не считаем эти углы. Поче­му? Разве количество углов может быть любым? Нет.

1 Конечно, член 4R в формуле для внутренних углов прямо связан с замкнутостью в том смысле, что вершины прилегающих

Определение суммы углов многоугольника - student2.ru

Рис. 149

друг к другу треугольников совпадают; но внутренняя связь меж­ду суммой углов самих треугольников и их замкнутостью не явля­ется столь отчетливой.

Теперь этот вопрос ясен: в этих точках на сторонах нет углов δ. Эти точки никак не связаны с изломом линии, ограничивающей фигуру, и с возвращением к ее началу, с замыканием многоугольника посредством вращения уг­лов δ.

6) А как обстоит дело с внутренними углами? Столк­нувшись теперь с этим вопросом, я снова не представлял себе, как можно на него ответить. И снова сначала воз­никла смутная идея: вокруг точки и фигуры имеется пол­ный угол 360°. Внутри фигуры находится... «отверстие»! И скоро все стало ясно: должен быть полный отрицатель­ный угол 360°: внутри боковые углы перекрываются. Ве­личина этого перекрытия представляет собой отрицатель­ный угол вращения, минус δ. Когда эта фигура замыка­ется, сумма таких углов должна составить полный отри­цательный угол в 360°.

Определение суммы углов многоугольника - student2.ru

Рис. 151

Здесь читатель вправе задать вопрос, что же из всего этого следует. Та же самая формула, которая была из­вестна раньше, но она предстала теперь в новом свете: члены этой формулы приобрели прямое функциональное значение.

И такое понимание сразу же привело к озарению (ин­сайту): если боковые стороны и то или иное их число являются внешними, если существенным оказывается только вращение углов δ, то это относится к любой замк­нутой плоской кривой, к окружности, эллипсу, и т. д. ... (Я опускаю продолжение.)

7) Но проблема все еще не была окончательно реше­на. По мере того как она становилась ясной, возникало насущное требование: если такой ход рассуждения дей­ствительно имеет смысл, то тогда он должен иметь силу для любой замкнутой фигуры. Он должен быть справед­ливым для трехмерных многогранников, для четырехмер-

ных и n-мерных тел, вообще для всех замкнутых фигур... с необходимыми изменениями для неевклидового про­странства.

За шесть недель напряженной работы мне удалось по-настоящему понять трехмерные фигуры. (Годом поз­же я узнал, что один математик уже очень давно нашел формулу для многогранников, и все же я не хотел прой­ти мимо этого опыта, который привел меня к подлинному инсайту.) В течение этих недель проблема неизменно волновала меня, вызывала напряжение. Я изучал кон­кретные многогранники, например кубы, части кубов, некоторые пирамиды и т. д.; способы объединения телес­ных углов в полный телесный угол. За это время я зна­чительно развил в себе способность визуально представ­лять телесные углы и соединять их в воображении. Я не искал формулы методом проб и ошибок, не проверял гипотезы; я просто выяснял, что получится, если телес­ные углы воображаемого конкретного многогранника со­единятся в одной точке: например, как углы куба, све­денные в центр сферы, образуют полный телесный угол 1, какие суммы образуют другие углы других многогранни­ков — частей куба, пирамид, параллелепипедов и т. д.

Бывали очень драматические моменты, как, напри­мер, когда один из моих друзей сказал мне: «Перестань принимать это так близко к сердцу. Задача неразрешима, так как сумма углов пирамиды меняется при изменении ее высоты. Точнее, она является функцией высоты».

8) Но процесс мышления продолжал развиваться. После огромных усилий решение для трехмерных тел

1 Так же и в случае двух измерений угол при вершине квадрата является одной четвертью полного угла, причем все четыре угла делают его полным, или угол при вершине правильного шести­угольника составляет одну треть полного угла, три трети делают его полным.

Определение суммы углов многоугольника - student2.ru

Рис. 152

Вообще говоря, вводя понятие угла, следует рассматривать угол, как часть полного угла, или как часть вращения на полный угол (см. гл. 4. с. 162).

пришло ночью в полусонном состоянии. Хотя я не мог вспомнить, чтобы что-нибудь записывал, я утром обнару­жил на листе бумаги следующую формулу:

Σe =Σплоских углов +2 углов при вершинах+Σδ (= 1), где е обозначает внешний телесный угол. Возьмем плос­кость (а), согнем ее вдоль прямой линии (b); восстано­вим к каждой плоскости нормальную плоскость (с). Меж­ду нормальными «плоскими углами» (соответствующими боковым углам Н двумерных фигур) вы обнаружите «углы при вершинах» (с); согните эти углы в одной из точек (d), и вы получите δ. Чтобы многогранник был замкнутым, сумма углов δ должна составлять полный телесный угол!

Определение суммы углов многоугольника - student2.ru Определение суммы углов многоугольника - student2.ru

Определение суммы углов многоугольника - student2.ru

Рис. 153

Вскоре я понял, что то, что справедливо в частном случае «изгибания плоскости», имеет силу для всех телесных углов. Если вершины всех углов рассматривать как центр сферы, то углы δ, «полярные углы», должны заполнять сферу. С помощью этой идеи я получил формулу для многогранников. Затем было получено решение для сум­мы внутренних углов, основанное на идее объемного «от­верстия».

Последующие дни были посвящены строгим доказа­тельствам формул для сферы и т. д.

Я не буду описывать дальнейший ход моего мышле­ния. Здесь я прерву свой рассказ на том счастливом моменте, когда стала прозрачной внутренняя связь между замкнутостью и суммой углов многогранников и плоских фигур.

В заключение охарактеризуем основные этапы про­цесса мышления:

1. Ощущение существенной взаимосвязи структуры замкнутых фигур и суммы их углов и потребность ясно постичь эту связь.

2. Первичная идея целостной замкнутости и «углово­го пространства». Здесь произошло изменение цели: вме­сто того чтобы рассматривать внутренние углы, мы заня­лись вопросом о сумме внешних углов, смутно ощущая, что этот вопрос является структурно более простым. (Позднее эта мысль получила ясное подтверждение в хо­де мышления.)

3. Сосредоточение внимания на необходимом для замы­кания фигуры этапе привело к радикальному изменению понимания значения угла, к интуиции относительно «угла вращения δ»; это произошло в результате отделения того, что является структурно релевантным для осуществления замыкания, от того, что таковым не является.

4. Рассматривая углы δ как нечто целое, мы интуи­тивно поняли, что существует внутренняя связь между углами и замкнутостью. В отличие от простой суммы обычных углов все углы δ дают завершенную форму,
замкнутость, полный угол в 360°. На этом этапе произо­шла перегруппировка частей целого.

δ-части после отделения от боковых углов рассматри­вались как единое целое. Но даже если испытуемому на­чертить углы с уже проведенными дополнительными линиями, делящими каждый угол на три части, он может продолжать хаотически комбинировать углы обычным способом (при котором три части каждого отдельного угла оказываются равноценными, а сумма углов все еще состоит из обычных углов). Здесь производимая группи­ровка (отделение углов δ от структурно внешних боко­вых углов, не принимавших никакого участия в замыка­нии фигуры) направлялась задачей понять замкнутость фигуры. Концентрация внимания на углах δ и объедине­ние их в единое целое позволили найти структурный

перенос этого фактора (см. с. 227) на фоне внешних к структуре факторов: число боковых углов, обычных углов, сторон и вершин.

Определение суммы углов многоугольника - student2.ru

Рис. 154

5. Было дано подробное доказательство полученной интуитивно формулы. Уменьшая длины сторон до нуля, мы установили прямую связь между внешними углами и первоначальной идеей «углового пространства», окружаю­щего точку.

6. Возникла проблема, которая была затем решена; был найден принцип, применимый и в частном случае вогнутого многоугольника (см. с. 230).

7. Благодаря инсайту было осмыслено обычное дока­зательство, которое само по себе оставалось непонятным. Обычная формула обрела новый и более глубокий смысл: было обнаружено функциональное значение членов фор­мулы.

8. Затем был рассмотрен вопрос о внутренних углах. И снова вначале возникла глобальная идея целого — пред­ставление о цельном «отверстии», сумме отрицательных углов δ, равной 360°.

9. Расширилась область применимости полученного результата: было обнаружено, что он распространим на все замкнутые плоские фигуры. Благодаря инсайту ис­чезли ограничения, характерные для обычной точки зрения.

10. Мы почувствовали необходимость довести дело до конца: если в инсайте было обнаружено нечто фундамен­тальное, то найденное отношение должно выполняться также и для трехмерных фигур и т. д. Мы начинали с определения суммы телесных углов. Мы изучали сравни­тельно простые виды многогранников. Несмотря на труд­ности, мы в воображении объединяли углы и определяли их сумму. Вначале радикальное, общее решение казалось невозможным.

11. Решение пришло однажды ночью — это было

структурно ясное решение, как в гораздо более простом случае двухмерных фигур.

Самую важную роль в этом процессе играло стремле­ние постичь внутреннюю структуру задания. И снова мы увидели, какую роль в свете структурных требований иг­рают свойства целого, реорганизация, перегруппировка, постижение функционального значения частей в целом и т. д.

Каждый этап был частью единого последовательного хода мышления; полностью отсутствовали какие бы то ни было случайные действия, слепые пробы и ошибки.

Решение было найдено не сразу, процесс мышления протекал нелегко; это, очевидно, было вызвано тем, что в ходе мышления необходимо было преодолеть обычные, сами по себе ясные, сильные структурные факторы; а позднее, в случае многогранников, необходимо было на­учиться эффективно действовать в сложных проблемных ситуациях.

ГЛАВА 9

Открытие Галилея

Как Галилей открыл закон инерции и, таким образом, положил начало современной физике?

Вопрос о том, как в действительности мыслил Гали­лей, многократно обсуждался. Даже теперь это до конца не ясно. Очень трудно дать подробное описание его мыш­ления. Задача, стоявшая перед Галилеем, усугублялась тем, что существовали очень сложные понятия и теории о природе движения 1. Исторические интерпретации неко­торых моментов отличаются друг от друга, это касается и вопроса о том, в какой степени старые концепции игра­ли роль в процессе мышления Галилея 2.

Споры велись вокруг следующих вопросов: направля­лось ли мышление Галилея индукцией? Или дедукцией? Эмпирическими наблюдениями и экспериментом или же

1 В частности, различались «естественное» и насильственное движения. Существовало понятие о необходимо уменьшающейся "vis impressa" (приложенной силе) и спекуляции о роли среды в задержке того момента, когда тело приходит в состояние покоя. Существовали определенные представления о «естественных» кру­говых движениях с постоянной скоростью и т. д.

2 Читатели, которые интересуются историей развития теории, могут прочитать следующие труды: Wohlwill S. von. Die Entde­ckung des Beharrungsgesetzes.—"Zeitschrift für Völkerpsychologie und Sprachwissenschaft", 1883, Vol. XIV, S. 365—410; 1884, Vol. XV, S. 70—135; Mach E. Die Mechanik in ihrer Entwicklung. Leipzig. Brockhaus F. A., 1908, замечательные исследования Александра Койре «Этюды о Галилее» (1, II, III.Paris, Hermann, 1939) и, ко­нечно, прежде всего труды самого Галилея.

априорными предпосылками? Можно ли считать главной заслугой Галилея то, что он сделал качественные наблю­дения количественными?

Когда изучаешь литературу, — древние трактаты по физике и труды современников Галилея, — понимаешь, что одной из самых замечательных черт его мышления была способность достигать ясного структурного понима­ния на чрезвычайно сложном и запутанном фоне.

Я не буду пытаться здесь произвести историческую реконструкцию. Это потребовало бы тщательного обсуж­дения большого числа источников — а я не историк. К то­му же опубликованного исторического материала недо­статочно для психолога, которого интересуют особенности развития процесса мышления, обычно не получающие отражения в трудах ученых. К сожалению, мы не можем расспросить самого Галилея о том, как в действительно­сти развивался процесс его мышления. Мне бы, в част­ности, очень хотелось задать ему несколько вопросов по ряду пунктов.

Я постараюсь коротко изложить историю этого откры­тия и показать некоторые факторы и направления этого удивительного процесса, которые представляются мне наиболее существенными. Нижеследующая история явля­ется в некоторых отношениях психологической гипотезой, не претендующей на историческую точность, но я думаю, что она будет для нас весьма поучительной.

Я предлагаю читателю не только прочесть то, что я собираюсь рассказать, но и постараться поразмышлять вместе со мной.

I

Вот описание ситуации:

1. Если вы держите камень в руке, а потом отпустите его, то он упадет вниз. Старая физика утверждала: «Тя­желые тела ищут свое место, тяготеют к земле».

2. Если толкнуть какое-нибудь тело, например тележ­ку, или покатить по горизонтальной плоскости шар, то они придут в движение, некоторое время будут двигаться, а затем остановятся — вскоре, если я толкну их слабо, несколько позднее при сильном толчке.

Таков простейший смысл старого понятия «vis im­pressa». «Движущееся тело рано или поздно остановится,

если перестанет действовать приводящая его в движение сила». Разве это не так? Это очевидно.

3. Конечно, существуют некоторые дополнительные факторы, которые следует рассматривать в связи с вопро­сами движения, а именно величина объекта, его форма, поверхность, по которой он движется, наличие или отсут­ствие препятствий и т. д.

Итак, нам известно очень много фактов о движении. Они нам знакомы. Но понимаем ли мы их? Нам кажется, что понимаем. Понимаем ли мы, чем вызывается движе­ние? Видим ли мы здесь действие определенного прин­ципа?

Галилея не удовлетворяли эти знания. Он спросил се­бя: «Знаем ли мы, как действительно происходят такие движения?» Побуждаемый желанием понять главное, понять внутренние законы движения, Галилей сказал себе: «Мы знаем, что тяжелые тела падают, но как они падают? Падая, тело приобретает скорость. Ско­рость тем больше, чем большее расстояние проходит тело. Как изменяется скорость по мере движения тела?»

Обыденный опыт дает нам только смутную картину процесса. Галилей начал производить наблюдения и экс­периментировать, надеясь установить, что происходит со скоростью и управляется ли ее изменение законами, ко­торые можно понять. Его экспериментальные установки по сравнению с установками, которые позже разработали физики, были очень грубыми, по, проводя свои наблюде­ния и эксперименты, он пытался сформулировать и про­верить определенную гипотезу. Сначала он выдвинул ошибочную догадку, затем нашел формулу для ускорения падающего тела. Поскольку скорость падения столь ве­лика, что трудно установить ее точное значение, Галилей, желая более тщательно изучить вопрос, спросил себя: «Не могу ли я исследовать это более удобным способом? Шары скатываются по наклонной плоскости. Стану-ка я изучать шары. Разве свободное падение не является лишь частным случаем движения по наклонной плоскости, толь­ко под углом 90°, а не под меньшим углом?»

Изучая ускорение в различных случаях, он понял, что оно равномерно уменьшается с уменьшением угла накло­на: порядок угла соответствует порядку убывающего ускорения.

Определение суммы углов многоугольника - student2.ru

Рис. 155

Ускорение стало самым главным и центральным фак­тором, как только Галилей понял принцип, связывающий уменьшение ускорения с величиной угла.

II

Затем он внезапно спросил себя: «Но ведь это только половина картины? Разве то, что происходит, когда мы подбрасываем тело вверх или толкаем в гору шар, не является второй симметричной частью картины, которая, подобно отражению в зеркале, повторяет то, что у нас уже есть, и делает картину полной?»

Определение суммы углов многоугольника - student2.ru

Рис. 156

Когда тело подбрасывают вверх, мы имеем не положи­тельное, а отрицательное ускорение. По мере движения тела вверх оно замедляется. Симметрично положительно­му ускорению падающего тела это отрицательное ускоре­ние уменьшается с уменьшением угла наклона. Такая симметрия делает картину цельной, законченной 1

III

Но делает ли это картину полной? Нет. В ней есть пробел. Что произойдет в том случае, если плоскость бу­дет горизонтальной, угол равен нулю, а тело будет дви­гаться? Во всех случаях можно начинать с заданной скорости. Что тогда должно произойти в соответствии с такой структурой?

Ускоренное движение вниз и замедленное вверх пере­ходят с отклонением от вертикали... (положительное и отрицательное ускорения равны нулю)... в движение с достоянной скоростью?! Если тело движется по горизон­тали в заданном направлении, то оно будет продолжать двигаться с постоянной скоростью вечно, если только «внешняя сила не изменит его состояние движения.

Это противоречит старому утверждению, приведенно­му выше в пункте 2. Тело, движущееся с постоянной ско­ростью, никогда не придет в состояние покоя, если не будут действовать тормозящие силы, независимо от того, была ли сила, которая привела тело в движение, большой или малой. Какой удивительный вывод! Он явно проти­воречит всему, что мы знаем, и все же без него структур­ная картина останется неполной.

Конечно, мы не можем осуществить этот эксперимент. Даже если бы нам удалось устранить все внешние пре­пятствия, что невозможно сделать, то все равно наблюде­ние вечно длящегося движения будет нам недоступно.

1 Галилей усмотрел и конкретизировал идею структурной ди­намической симметрии противоположных явлений, а именно: тело, скатывающееся по наклонной плоскости, должно подняться по про-

Рис. 157 Определение суммы углов многоугольника - student2.ru Рис. 158

Однако уменьшение ускорения ясно указывает на отсут­ствие изменения скорости в этом случае.

Взгляды Галилея получили подтверждение и заложи­ли основу для развития современной физики.

Современный читатель, конечно, знаком с этими взгля­дами. Я проиллюстрирую их на простом, всем известном примере. Труднее всего вывести поезд из состояния по­коя. Если поезд уже пришел в движение, то при усло­вии, что рельсы и колеса являются гладкими, для сохра­нения движения требуется меньшая сила, поезд движет­ся почти что сам по себе. Если мы теперь будем делать рельсы и колеса все более гладкими и будем наблюдать, как уменьшается сила, необходимая для движения, то графики, к нашему удивлению, покажут, что в случае идеально гладких колес и рельсов при отсутствии трения потребуется большие противодействующие силы, чтобы остановить поезд, привести его в состояние покоя 1.

_______________

Каковы существенные элементы этого процесса?

Во-первых, желание выяснить, понять, что происхо­дит, когда тело падает или катится вниз; желание узнать, не кроется ли за этими явлениями какой-то внутренний принцип; желание рассмотреть эти явления при различных углах наклона.

Это центрирует мысль на ускорении. Эксперименталь­ная установка появляется в результате предположения, что, сосредоточившись на вопросе об ускорении, можно прийти к ясному пониманию структуры.

Различные случаи выступают как части хорошо упо­рядоченной структуры, которая делает явной зависимость между углами наклона и величиной ускорения. Каждый случай занимает свое место в группе, и мы понимаем, что то, что происходит в каждом случае, определяется этим местом.

тивоположной плоскости на ту же высоту, причем его скорость будет уменьшаться точно так же, как она увеличивалась при дви­жении вниз. Сначала он увидел такую динамическую симметрию в колебаниях люстры в Пизанском соборе.

1 Ср. с очень упрощенным описанием процесса мышления Га­лилея в: Эйнштейн А., Инфельд Л. Эволюция физики. — Эйнштейн А. Собр. научных трудов, т. IV, М. «Наука», 1967, с. 357—543.

Во-вторых, эта структура рассматривается теперь как часть более широкого контекста: существует другая, до­полнительная часть, симметричная первой, с которой они образуют одно целое; эти две половины представляют собой две большие, соответствующие друг другу подгруп­пы, с положительным ускорением в одной и с отрица­тельным — в другой. Целостные свойства этих половин дополняют друг друга. Они рассматриваются с одной точ­ки зрения, в их структурной симметрии, в согласованной структуре целого.

В-третьих, оказывается, что в этой структуре сущест­вует критическое место — место горизонтального движе­ния. Это место должно существовать, иначе структура будет неполной. Ввиду этих требований горизонтальное движение выступает как случай, когда не происходит ни ускорения, ни замедления, — как случай движения с по­стоянной скоростью.

Таким образом, покой становится частным случаем движения с постоянной скоростью, случаем, когда отсут­ствует положительное или отрицательное ускорение. Покой и равномерное прямолинейное движение в гори­зонтальном направлении оказываются структурно эквива­лентными.

Конечно, Галилей использовал операции традицион­ной логики, такие, как индукция, умозаключение, форму­лировка и вывод теорем, а также наблюдение и искусное экспериментирование. (Одной из замечательных особен­ностей мышления Галилея было сочетание строгих рас­суждений, математических методов с использованием эксперимента для проверки теоретических идей или для поисков решения теоретических проблем.) Но все эти операции осуществляются на своем месте в общем про­цессе.

Сам процесс направляется перецентрацией, которая проистекает из желания добиться исчерпывающего пони­мания. Это приводит к трансформации, в результате ко­торой явления рассматриваются в составе новой, ясной структуры.

Переход от старого видения к новому привел к фун­даментальным изменениям значения понятий. Радикаль­но изменились места, роли и функции представлений о движении. Внутренние связи стали рассматриваться в совершенно новой структуре; была осуществлена новая

группировка, и была получена новая классификация дви­жений 1.

Так, раньше покой и некоторые «естественные» кру­говые движения противопоставлялись другим видам дви­жения. Теперь покой и равномерное прямолинейное дви­жение стали рассматриваться как структурно равнознач­ные и противопоставлялись движениям с положительным или отрицательным ускорением.

Подъем и падение тел рассматриваются вместе как случаи ускорения, как симметричные части общей карти­ны. Свободное падение и свободное движение вверх рас­сматриваются как частные случаи общей группы движе­ний в каком-нибудь направлении.

Окончание движения больше не считается необходи­мым результатом уменьшающегося, прекращающегося действия vis impressa (приложенной силы). Теперь конец движения рассматривается совершенно иначе: движение прекращается вследствие внешнего трения.

Трение не является больше одним из многих факто­ров, которые следует учитывать при описании движения; теперь оно играет роль, противоположную роли инерции. В то время как раньше считали, что прямолинейное дви­жение прекращается независимо от наличия трения, благодаря естественному угасанию vis impressa, с новой точки зрения трение является основной причиной ограни­чения движения.

Сила выступает как нечто существенным образом определяющее ускорение.

Все представления приобретают новое значение бла­годаря той роли и функции, которую они выполняют в новой структуре.

Новые понятия открыли удивительную перспективу для понимания огромного числа явлений. Они позволили

1 Для краткости я буду пользоваться некоторыми формулиров­ками, которые во всей полноте были найдены позже, но которые так или иначе подразумевались или уже намечались во взглядах Галилея. Сам Галилей был чрезвычайно осторожен в своих фор­мулировках.

Формулировка Галилея относится к горизонтальному движе­нию. Он также применял свой принцип к движению в других на­правлениях. Он не обобщил свой принцип до известного нам те­перь закона инерции, но это вскоре сделали другие. Мы не знаем наверное, сознавал ли он универсальный характер этого принципа.

совершенно по-новому рассматривать движение небесных тел. Впоследствии Ньютон описал эти движения как ре­зультат прямолинейного движения по инерции, с одной стороны, и ускоренного движения под действием силы тяжести — с другой.

_________

Продуктивные процессы часто имеют следующую при­роду: исследования начинаются с желания достичь под­линного понимания, найти более глубокие ответы на ста­рые вопросы. Определенная область в поле исследования становится критической, помещается в фокус; но при этом она не становится изолированной. Возникает новое, более глубокое структурное видение ситуации, предполагающее изменение функционального значения элементов, их но­вую группировку и т. д. Исходя из того, что требует ситуация в отношении критической области, мы приходим к разумному предсказанию, которое — подобно другим частям структуры — нуждается в прямой

Наши рекомендации