Ddr/ddr2 sdram: отличия от sdr sdram

Начнем с рассмотрения микросхем DDR SDRAM. По большей части они оказываются похожими на микросхемы SDR SDRAM – так, оба типа микросхем, как правило, имеют одинаковую логическую организацию (при одинаковой емкости), включая 4-банковую организацию массива памяти, и одинаковый командно-адресный интерфейс. Фундаментальные различия между SDR и DDR лежат в организации логического слоя интерфейса данных. По интерфейсу данных памяти типа SDR SDRAM данные передаются только по положительному перепаду («фронту») синхросигнала. При этом внутренняя частота функционирования микросхем SDRAM совпадает с частотой внешней шины данных, а ширина внутренней шины данных SDR SDRAM совпадает с шириной внешней шины данных. В то же время, по интерфейсу данных памяти типа DDR (а также DDR2) данные передаются дважды за один такт шины данных – как по положительному перепаду синхросигнала («фронту»), так и по отрицательному («срезу»).

Возникает вопрос – как можно организовать удвоенную скорость передачи данных по отношению к частоте шины памяти? Напрашиваются два решения – можно либо увеличить в 2 раза внутреннюю частоту функционирования микросхем памяти (по сравнению с частотой внешней шины), либо увеличить в 2 раза внутреннюю ширину шины данных (по сравнению с шириной внешней шины). Достаточно наивно было бы полагать, что в реализации стандарта DDR было применено первое решение, но и ошибиться в эту сторону довольно легко, учитывая «чисто маркетинговый» подход к маркировке модулей памяти типа DDR, якобы функционирующих на удвоенной частоте (так, модули памяти DDR с реальной частотой шины 200 МГц именуются «DDR-400»). Тем не менее, гораздо более простым и эффективным – исходя как из технологических, так и экономических соображений – является второе решение, которое и применяется в устройствах типа DDR SDRAM. Такая архитектура, применяемая в DDR SDRAM, называется архитектурой «2n-предвыборки» (2n-prefetch). В этой архитектуре доступ к данным осуществляется «попарно» – каждая одиночная команда чтения данных приводит к отправке по внешней шине данных двух элементов (разрядность которых, как и в SDR SDRAM, равна разрядности внешней шины данных). Аналогично, каждая команда записи данных ожидает поступления двух элементов по внешней шине данных. Именно это обстоятельство объясняет, почему величина «длины пакета» (Burst Length, BL) при передаче данных в устройствах DDR SDRAM не может быть меньше 2.

Устройства типа DDR2 SDRAM являются логическим продолжением развития архитектуры «2n-prefetch», применяемой в устройствах DDR SDRAM. Вполне естественно ожидать, что архитектура устройств DDR2 SDRAM именуется «4n-prefetch» и подразумевает, что ширина внутренней шины данных оказывается уже не в два, а в четыре раза больше по сравнению с шириной внешней шины данных. Однако речь здесь идет не о дальнейшем увеличении количества единиц данных, передаваемых за такт внешней шины данных – иначе такие устройства уже не именовались бы устройствами «Double Data Rate 2-го поколения». Вместо этого, дальнейшее «уширение» внутренней шины данных позволяет снизить внутреннюю частоту функционирования микросхем DDR2 SDRAM в два раза по сравнению с частотой функционирования микросхем DDR SDRAM, обладающих равной теоретической пропускной способностью. С одной стороны, снижение внутренней частоты функционирования микросхем, наряду со снижением номинального питающего напряжения с 2.5 до 1.8 V (вследствие применения нового 90-нм технологического процесса), позволяет ощутимо снизить мощность, потребляемую устройствами памяти. С другой стороны, архитектура 4n-prefetch микросхем DDR2 позволяет достичь вдвое большую частоту внешней шины данных по сравнению с частотой внешней шины данных микросхем DDR – при равной внутренней частоте функционирования самих микросхем. Именно это и наблюдается в настоящее время – модули памяти стандартной скоростной категории DDR2-800 (частота шины данных 400 МГц) на сегодняшний день достаточно распространены на рынке памяти, тогда как последний официальный стандарт DDR ограничен скоростной категорией DDR-400 (частота шины данных 200 МГц).

За более подробной информацией о реализации DDR2 и основных отличиях ее от DDR мы рекомендуем обратиться к нашей статье «DDR2 –грядущая замена DDR. Теоретические основы и первые результаты низкоуровневого тестирования». А сейчас, по аналогии с DDR, нам осталось лишь рассмотреть, в каком количестве осуществляется считывание/запись данных в микросхемах DDR2, и какое минимальное значение может принимать величина длины пакета данных. Итак, поскольку DDR2 – это «все та же DDR», мы по-прежнему имеем удвоенную скорость передачи данных за один такт внешней шины данных – иными словами, на каждом такте внешней шины данных мы ожидаем получить не менее двух элементов данных (как всегда, разрядностью, равной разрядности внешней шины данных) при чтении, и обязаны предоставить микросхеме не менее двух элементов данных при записи. В то же время, вспоминаем, что внутренняя частота функционирования микросхем DDR2 составляет половину от частоты ее внешнего интерфейса. Таким образом, на один «внутренний» такт микросхемы памяти приходится два «внешних» такта, на каждый из которых, в свою очередь, приходится считывание/запись двух элементов. Следовательно, на каждый «внутренний» такт микросхемы памяти приходится считывание/запись сразу четырех элементов данных (отсюда и название – 4n-prefetch), т.е. все операции внутри микросхемы памяти осуществляются на уровне «4-элементных» блоков данных. Отсюда получаем, что минимальная величина длины пакета (BL) должна равняться 4. Можно доказать, что, в общем случае, архитектуре «2nn-prefetch» всегда соответствует минимальная величина Burst Length, равная 2n (n = 1 соответствует DDR; n = 2 – DDR2; n = 3 – грядущей DDR3).

Таблица 9.1.

Компонент Пропускная способность, МБ/с
Одноканальный режим Двухканальный режим
Память DDR2-400
Память DDR2-533
Память DDR2-667
Память DDR2-800
Память DDR2-1000
Память DDR2-1066
800 МГц Quad-Pumped Bus(Pentium 4, Pentium D)
1066 МГц Quad-Pumped Bus (Pentium 4 Extreme Edition)

Наши рекомендации