В. Нарушение диффузионной способности легких. 4 страница

В физиологических условиях в разных участках легких объем кровотока определяется комплексом факторов, среди которых ведущее место занимает рО2 альвеолярного воздуха. Уменьшение вентиляции альвеолы и снижение в ней рО2 сопровождается гипоперфузией этой зоны. Благодаря такому механизму регуляции в покое часть альвеол не функционирует, и, тем не менее, насыщение крови кислородом поддерживается на адекватном уровне (96-98%). Однако при значительном нарушении вентиляции альвеол происходит повышение давления в легочной артерии, вызванное спазмом сосудов. Окончательно механизм этого феномена не выяснен. Однако четко выявлено усиление вазоконстрикции при повышении концентрации ионов [Н+], накоплении вазоконстрикторных субстанций в зоне невентилируемых альвеол (гистамин, серотонин, ПГ F2α), активации β-адренергической импульсации легочных сосудов в условиях гипоксии. При отсутствии патологического процесса в легких выключение из вентиляции части функционирующей поверхности вызывает рефлекторное уменьшение в тех же участках и легочного кровотока. При патологии этот приспособительный механизм может оказаться неадекватным и проявляться в виде гиперреактивности (возникновение артериальной легочной гипертензии), гипореактивности (увеличение шунтирования венозной крови) и гипоксемии. Повышение давления в малом круге в условиях покоя свидетельствует о манифестации легочной гипертензии, выявление повышенного давления только в условиях физической нагрузки – о латентной форме легочной гипертензии.

Причины первичной (идиопатической) легочной гипертензии остаются неясными. Некоторые авторы связывают ее развитие с патологией легочного нервного сплетения (плексогенная легочная артериопатия) и веноокклюзионной патологией. Диагноз первичной легочной гипертензии может быть поставлен при отсутствии в анамнезе указаний на легочную и сердечную патологию, повышении легочного давления при нормальном капиллярном кровотоке, отсутствии локальных изменений в сосудистом русле легких при ангиографическом исследовании. Для этой патологии характерно высокое давление в легочной артерии и гипертрофия правых отделов сердца. При морфологических исследованиях выявляется концентрический фиброз интимы легочной артерии.

Заболевания легких, особенно сопровождающиеся обструктивными нарушениями, могут приводить к развитию вторичной легочной гипертензии.

Соответственно степени альвеолярной гиповентиляции и альвеолярной гипоксии возникает спазм легочных артериол, ограничивающий кровоток через плохо вентилируемые альвеолы и препятствующий сбросу венозной крови в большой круг кровообращения (альвеолярно-сосудистый рефлекс Эйлера-Лильестранда). Выраженность рефлекса зависит от степени альвеолярной гиповентиляции.

При сердечной недостаточности также возможно развитие легочной гипертензии.

У здоровых людей может развиваться преходящая легочная; гипертензия при вдыхании воздуха с низким содержанием кислорода.

Функциональная диагностика перфузионных нарушений. Неинвазивные методы функциональной диагностики (электрокардиография, механокардиография и др.) позволяют косвенно оценивать состояние перфузии легких и связанных с этим органных нарушений. В последние годы широкое распространение получили методы ангиографии и радиоизотопной сцинтиграфии.

Исследование легочного кровотока можно проводить локально и на органном уровне. Общий объем легочной перфузии равен кровотоку в большом круге кровообращения. Измеряют его методом газо- и термодилюции, магнитной флоуриметрии, радиоизотопным методом. Принцип метода разведения красителя или радиоактивного изотопа заключается в том, что объем легочного кровотока равен отношению количества индикатора к его концентрации в артериальной крови.

Способ определения легочного кровотока по Фику основан на сопоставлении объема поглощенного кислорода (vO2) с артерио-венозной разницей по кислороду:

Q =VO2/paO2 – pvO2.

Ингаляционные пробы с использованием таких газов, как закись азота, ацетилен позволяют одновременно оценить легочную перфузию, диффузионную способность и альвеолярный объем.

Легочную перфузию оценивают при измерении объема перфузированной крови в единицу времени, системного артериального давления и давления в легочной артерии, которое измеряют с помощью катетера, введенного в правый желудочек и легочную артерию.

Основой раннего выяснения перфузионных нарушений является определение гемодинамических показателей в покое и при дозированной физической нагрузке, в положении сидя (лежа) и стоя.

В условиях нагрузки увеличение объема перфузируемой крови сопровождается повышением давления в легочной артерии, которое людей моложе 40 лет не превышает 30 мм рт.ст.

Нарушение вентиляционно-перфузионных отношений.Процессы вентиляции, перфузии и диффузии протекают в различных отделах легких неодинаково. Эта функциональная неоднородность имеет существенное значение в условиях патологии. Нарушения газообмена возникают при изменении каждой из перечисленных функций, наиболее часто – при несоответствии вентиляции и кровотока.

Суммарно в легких отношение легочной вентиляции (Va, л/мин) к перфузии (Q, л/мин) у здорового человека в покое составляет примерно 0,8-1,0 (например, Vа/Q=4,5/5=0,9). Локальные отклонения отношения Va/Q=0,63-3,3 проявляются минимальными изменениями суммарного газообмена. У человека, находящегося в вертикальном положении, интенсивность перфузии снижается от основания к верхушкам легких, в нижних отделах по сравнению с верхушками кровоток значительно больше.

Расстояние между верхушками и диафрагмой у взрослого человека равно примерно 30 см. В положении стоя в плевральной полости разница давления в верхних и нижних отделах составляет в среднем 7 см вод.ст., из этого следует, что в области верхушек транспульмональное давление выше, чем у основания. Поэтому на вдохе наиболее выражено растяжение альвеол, расположенных в верхних отделах легких, и на их долю приходится большая нагрузка при дыхании.

Различия легочного кровотока проявляются в легочных сегментах, расположенных на разных уровнях относительно основания сердца. В отделах легких, расположенных ниже уровня сердца, к среднему давлению в легочных артериях прибавляется гидростатическое давление кровяного столба. В отделах, расположенных выше уровня сердца, наоборот, величина легочного кровотока меньше на эту величину.

Относительно низкое давление в малом круге кровообращения определяет ограничение перфузии в верхушках легких, которое в положении лежа нивелируется и вместо него появляется вентро-дорзальный градиент. В положении на боку легкое, расположенное ниже, вентилируется и перфузируется лучше. Во время физической нагрузки значение коэффициента Va/Q изменяется, при этом повышение перфузионного давления обеспечивает улучшение кровотока в верхушечных отделах легких.

Если вентиляция преобладает над кровотоком (АВ/МО будет больше 1,0), то из крови вымывается большее количество СО2, что ведет к гипокапнии. Если вентиляция отстает от кровотока (АВ/МО меньше 1,0), то в альвеолярном воздухе будет нарастать РСО2 и снижаться РО2, что приведет к гипоксии и гиперкапнии.

При нормальном газообмене оптимальное соотношение АВ/МО должно поддерживаться во всех альвеолах. Однако полностью это условие не выполняется даже в норме из-за анатомических и функциональных особенностей отдельных легочных единиц (участков легких). Например, альвеолярная вентиляция и перфузия в нижних отделах легких осуществляется интенсивнее, чем в остальных его отделах. В верхних отделах легких альвеолярная вентиляция доминирует над кровотоком, а в нижних, наоборот – перфузия преобладает над альвеолярной вентиляцией.

В условиях патологии (например, при хронических обструктивных заболеваниях легких, дистресс-спндроме взрослых и новорожденных) неравномерное распределение сопротивления дыхательных путей и растяжимости легочной ткани приводит к гиповентиляции, нарушается соответствие между вентиляцией и кровотоком, а значение вентиляционно-перфузионного коэффициента может быть в пределах от 0,01 до 100. Наряду с этим имеются нормально функционирующие зоны легочной ткани и пространства, вентилируемые крайне недостаточно, вплоть до формирования полного шунта.

Низкое значение Va/Q характерно для тех зон, где вентиляция значительно меньше перфузии, наоборот, высокие значения Va/Q определяются в зонах с гипервентиляцией и резко сниженной перфузией, при этом одни зоны легких хорошо вентилируются и кровоснабжаются, а в других – вентилируется неперфузируемое альвеолярное мертвое пространство. В отдельных зонах вентиляция и кровоток находятся в оптимальном соответствии, благодаря чему осуществляется адекватный газообмен, но в других зонах имеет место перфузия нефункционирующих коллабированных альвеол. В случае, если процессы вентиляции и перфузии сохраняются на постоянном уровне при уменьшении поверхности газообмена, постепенно увеличивается объем мертвого пространства и примесь венозной крови с последующим развитием гипоксии и гиперкапнии.

Нарушения вёнтиляционно-перфузионных отношений, как правило, проявляются гипоксемией и нормокапнией. Повышение содержания углекислого газа приводит к стимуляции дыхательного центра и гипервентиляции. Однако на величину рО2 артериальной крови это значительного влияния не оказывает, так как увеличение вентиляции происходит преимущественно в хорошо вентилируемых альвеолах. Принадлежащие к ним капилляры содержат оксигенированную кровь, и дальнейшее повышение рО2 даст только незначительный дополнительный прирост оксигемоглобина.

Иначе обстоит дело с углекислым газом. Свойство СО2 легко растворяться обеспечивает быстрое выравнивание значений рСО2 в капиллярной крови и альвеолярном воздухе. Поэтому при гипервентиляции происходит быстрое вымывание СО2 и развитие гипокапнии. Смешение крови с низким содержанием СО2 и крови с высоким содержанием СО2, поступающей из зоны плохо вентилируемых альвеол, проявляется нормокапнией.

При заболеваниях легких к физиологической неравномерности (АВ/МО альвеолярная вентиляция/перфузия) присоединяется патологическая. Так, при пневмониях, ателектазе и других заболеваниях кровоток и альвеолярная вентиляция в пораженных участках легких ограничивается, а в остальных здоровых участках интенсифицируется. Поэтому в легких как в физиологических, так и особенно в патологических условиях имеются альвеолы, (1) оптимально вентилируемые и перфузируемые; (2) альвеолы, которые вентилируются, но не перфузируются (так называемое альвеолярное мертвое пространство); (3) альвеолы, которые не вентилируются, но перфузируются (альвеолярный веноартериальный шунт). Между этими крайними состояниями возможна масса переходных состояний. Таким образом, газовый состав оттекающей от легких крови будет зависеть от интеграции всех перечисленных механизмов:

1. Оптимального значения коэффициента АВ/МО = 1.

2. Альвеолярного мертвого пространства (АВ/МО больше 1.0).

3. Альвеолярного веноартериального шунта (АВ/МО меньше 1,0).

Из изложенного материала следует, то определенная часть крови, в которой не произошло газообмена, попадает в артериальное русло. Это явление получило наименование сброса, или шунтирования. В легочной ткани шунтирование имеет место и при физиологических условиях (5-7%), но особое значение оно приобретает в патологии: глобальное поражение легких, врожденные пороки сердца (незаращение межпредсердной перегородки, межжелудочковой перегородки, Боталлова протока - прямые причины шунтов). Это ведет к гипоксемии, снижении оксигенации крови (цианоз), гиперкапнии, ацидозу и другим проявления дыхательной недостаточности.

Б. Нарушение газового состава крови.

В самом определении дыхательной недостаточности заложен смысл изменения газового состава крови, т.е. неспособность дыхательной системы обеспечить нормальный газовый гомеостаз артериальной крови. К этим показателям относятся следующие:

1. Напряжение кислорода: (раО2 90-100 мм рт.ст.);

2. Напряжение углекислого газа (раСО2 40 мм рт.ст.);

3. Показатель водородных ионов (рН 7,40 ед.);

4. Объем кислорода (180-200 мл/л);

5. Объем углекислого газа (540-550 мл/л);

6. Насыщение гемоглобина кислородом (96-98%);

7. Остальные показатели кислотно-щелочного равновесия: буферные основания (ВВ 48), стандартный бикарбонат (SB 24), избыток или дефицит (ЕВ-2,5-+2,5 ммоль/л).

По мере формирования дыхательной недостаточности первоначально развивается гипоксемия (снижение раО2 ниже 90 мм рт.ст.) и далее гиперкапния (раСО2 более 40 мм рт.ст.) и ацидоз (рН менее 7,40 ед.) с потерей буферных оснований. Сатурация гемоглобина кислородом снижается до 80% и менее (цианоз). Гипоксемия, гиперкапния и ацидоз стимулируют периферические и центральные хеморецепторы. Кроме того, центральные хеморецепторы стимулируются ионами водорода спинномозговой жидкости, где также наблюдается сдвиг рН в кислую сторону (с 7,32 ед. и менее). Гиперкапнический и гипоксический стимулы активируют дыхательный центр и значительно повышают уровень легочной и альвеолярной вентиляции. Так, сдвиг рН артериальной крови на 0,01 ед. удваивает легочную вентиляцию, а повышение раСО2 на 1 мм рт.ст. увеличивают МОД на 1,5 л/мин. Изменяется ход кривой диссоциации оксигемоглобина.

Г. Одышка.

Одышка, или диспноэ – это нарушение глубины, частоты и ритма дыхания с субъективным компонентом ощущения недостатка воздуха или затруднением дыхания. Испытывая ощущение недостатка воздуха, пациент не только непроизвольно, но и сознательно уменьшает активность дыхательных движений, стремясь избавиться от тягостного чувства затруднения дыхания. Этим субъективным компонентом одышка отличается от остальных видов нарушений вентиляции (полипноэ, гиперпноэ и т.п.). Таким образом, одышка является главным фактором, ограничивающим жизненную, в первую очередь физическую активность больного человека. В условиях патологии одышку могут вызвать следующие причины:

1. Снижение оксигенации крови (рО2 менее 90 мм рт.ст., особенно в диапазоне 80-20 мм рт.ст.), альвеолярного воздуха (рАО2 менее 100 мм рт.ст.) или нарушения кровообращения в легких;

2. Нарушения транспорта газов крови (анемии, шунты, недостаточность кровообращения);

3. Ограничение подвижности грудной клетки и диафрагмы, что требует излишнего напряжения дыхательной мускулатуры;

4. Гипоксия, гиперкапния, ацидоз;

5. Повышенный обмен веществ в организме;

6. Функциональные и органические поражения ЦНС.

Патогенез одышки окончательно не изучен, однако в формировании одышки имеют значения следующие факторы:

1. Усиленная импульсация хеморецепторов вследствие ацидоза и стимуляция ею дыхательного центра;

2. Возбуждение надбульбарных структур (кора, гипоталамус, лимбика, т.к. формирование одышки осуществляется в коре больших полушарий);

3. Усиленная импульсация с механорецепторов трахеобронхиального дерева (медленно адаптирующихся, быстро адаптирующихся и J-механорецепторов). Известно, что стимуляция быстро адаптирующихся и J-рецепторов стимулирует развитие частого поверхностного дыхания).

4. Усиленная импульсация с проприорецепторов дыхательных мышц во время их значительного напряжения;

5. Усиленная импульсация с механо- и хеморецепторов верхних дыхательных путей во время кашля, бронхоспазма и т.п.;

6. Усиленная импульсация с прессо- и барорецепторов сосудистого русла, а также терморецепторов и болевых рецепторов.

Крайняя степень одышки носит название удушье, а приступы удушья называют астмой.

Виды одышек. По типу расстройств ритма дыхательных движений выделяют следующие виды одышек:

1. Инспираторная (затруднения на вдохе, встречается при сужении проксимальных дыхательных путей - трахея, крупные бронхи, например, в первой стадии асфиксии);

2. Экспираторная (затруднения на выдохе, встречается при сужении просвета дистальных дыхательных путей - мелких бронхов, например при бронхиальной астме);

3. Гиперпноэ – частое глубокое дыхание (встречается при анемизации мозга, сильном болевом раздражении и т.д.).

4. Тепловая одышка (термическое полипноэ);

5. Тахипноэ – частое поверхностное дыхание (при пневмониях, плевритах и других заболеваниях легких).

6. Редкое глубокое дыхание (стенотическое дыхание при сужении трахеи и верхних дыхательных путей);

7. Брадипноэ – редкое глубокое дыхание.

Теперь рассмотрим патогенетические механизмы нарушений легочного кровотока, или перфузии. Движущей силой кровотока в легких является градиент давления между правым желудочком и левым предсердием. Давление в правом желудочке равно 15-20, в левом предсердии – 5-7 мм рт.ст., и, таким образом, градиент давления составляет около 10 мм. Адекватность легочного кровотока уровню альвеолярной вентиляции для легких в целом определяется следующими факторами:

1. Объемом циркулирующей крови (около 5 л);

2. Эффективностью работы правого и левого желудочков сердца;

3. Сосудистым сопротивлением малого круга кровообращения;

4. Внутри альвеолярным давлением воздуха;

5. Влиянием гравитационных сил.

Все вышеуказанные факторы тесно взаимосвязаны, и любой из них в отдельности или различные их сочетания могут быть причиной расстройства легочной перфузии. Неадекватность легочно-капиллярного кровотока уровню альвеолярной вентиляции чаще всего возникает при развитии гипертензии или гипотензии в малом круге кровообращения.

Различают две формы легочной гипертензии: прекапиллярную и посткапиллярную. Прекапиллярная форма легочной гипертензии характеризуется повышением сопротивления в мелких сосудах малого круга кровообращения, включая капилляры. Посткапиллярная форма легочной гипертензии характеризуется застойными явлениями в легких. Обе формы встречаются при спазме артериол, сдавлении облитерации или обтурации сосудов легких, в т.ч. рефлекторном (раздражении барорецепторов легких, при сдавлении легочных вен опухолью, спайками), митральном стенозе, гипертонической болезни, инфаркте миокарда (левожелудочковая недостаточность). Нарушения легочного кровотока встречается при гипотензии, гиповолемии, пороках сердца при сбросе крови справа налево – шунтирование. Таким образом, к уменьшению перфузии легких приводят следующие процессы:

1. Нарушение сократительной способности правого желудочка;

2. Нарушение сократительной способности левого желудочка, приводящей к развитию застойных явлений в легких;

3. Некоторые врожденные и приобретенные пороки сердца (стеноз легочного ствола, правого предсердно-желудочкового отверстия и т.п).

4. Сосудистая недостаточность;

5. Эмболия легочной артерии.

Во всех случаях страдает насыщение крови кислородом, оттекающей от легких, – гипоксемия, что ведет к гипоксии тканей.

ПРИНЦИПЫ КЛАССИФИКАЦИИ

Наши рекомендации