Тромбоцитарно-сосудистый гемостаз
ГЕМОСТАЗ
Для того, чтобы понять механизмы возникновения различных форм патологический кровоточивости и тромбообразования необходимо познать те физиологические закономерности, которые приводят к остановке кровотечения, рассасыванию тромба, т.е. гемостаз.
ГЕМОСТАЗ – это совокупность защитно-приспособительных процессов, препятствующие потере крови и восстанавливающие кровоток при закупорки сосудов. В гемостазе условно выделяют свертывающую и противосвертывающую системы, которые находятся в состоянии равновесия. Если равновесие нарушается в сторону преобладания свертывающей системы, то развивается патологическая наклонность к тромбозам. Если преобладает противосвертывающая система – развиваются геморрагические диатезы (заболевания, характеризующиеся патологическими кровотечениями).
В гемостазе главное значение имеют три компонента: сосудистая стенка (в первую очередь интима сосудов); состояние клеток крови и плазменных ферментных систем (система свертывания, фибринолитическая система, каллекреин-кининовая система).
Выделяют 2 механизма гемостаза:
I. Тромбоцитарно-сосудистый гемостаз (ТСГ);
II. Коагуляционный гемостаз.
В тормбоцитарно-сосудистом гемостазе играют важную роль интима сосудов и тромбоцитов. ТСГ обозначают как первичный гемостаз, поскольку микрососудам и тромбоцитам (Тр) принадлежит ведущая роль в начальной остановке кровотечения в зоне микроциркуляции. А образование фибриновых сгустков происходит несколько позже, поэтому и называется вторичным гемостазом.
ТРОМБОЦИТАРНО-СОСУДИСТЫЙ ГЕМОСТАЗ
Как было выше сказано, главную роль в ТСГ играют сосуды и Тр.
Тр – или кровяные пластинки – безъядерные клетки округлой формы, диаметром 1-4 мкм. Тр образуются в костном мозге путем отщепления участков цитоплазмы от гигантских клеток – мегакариоцитов. Образование Тр регулируется гликопротеиновым гормоном – тромбопоэтином, который обнаружен в печени, почках, головном мозге, яичниках. Если число Тр снижается, то снижается и клиренс тромбопоэтина, и наоборот. На тромбоцитопоэз оказывают влияние интерлейкины 3,6,11 (Ил3,11 – синтезируются в макрофагах, Ил6 – лимфоцитах). Тр циркулируют в крови в течении 5-11 дней и затем разрушаются в печени, легких, селезенке.
С помощью электронной микроскопии было установлено, что Тр имеют достаточно сложное строение.
Мембрана Тр покрыта гликокаликсом, который богат гликопротеидами. Гликопротеиды выполняют роль рецепторных белков – 1в, 2в, 3а. особенно важную роль в свертывании крови играет 3 тромбоцитарный фактор. Этот фактор представляет собой фосфолипопротеиновый комплекс, входящий в состав мембраны.
Цитоплазма Тр – «гиаломер», в котором находятся микрофиламенты, состоящие из актина, миозина, тропомиозина. Центральная часть Тр – «грануломер», содержит митохондрии, гликоген и микрогранулы. Микрогранулы Тр различаются по своей структуре и химическому составу: a-гранулы, плотные тельца и лизосомы.
a-гранулы: содержат фибриноген, фактор Виллебранда, IV и V факторы свертывания, фибринонектин, альбумин, калликреин, тромбоспондин, a2-антиплазмин, тромбомодулин, активатор тканевого плазминогена, фибринстабилизирующий фактор, тромбоцитарный фактор роста.
Плотные тельца: содержат АТФ, АДФ, ГТФ, ГДФ, неорганический Са2+, серотонин, катехоламины, гистамин.
Значение лизосомальных ферментов до конца не выявлено.
Участие Тр в гемостазе определяется их функциями:
- Ангиотрофическая – способность поддерживать Тр нормальную структуру и функционирование микрососудов, их устойчивость к повреждающим воздействиям.
- Тр вызывают спазм поврежденных сосудов путем высвобождения вазоактивных веществ – адреналина, норадреналина, серотонина, тромбоксана (метаболит арахидоновой кислоты).
- Способны закупоривать повреждение сосудов путем образования первичной пробки (тромба).
- Участвуют в коагуляционном гемостазе.
- Существует предположение, что Тр могут поглощать вещества, растворенные в плазме и, возможно, способны к фагоцитозу неживых чужеродных частиц, вирусов и АТ (но роль Тр в неспецифических защитных механизмах невелика).
- Способны переносить на своей мембране ЦИК.
- Участвуют в репарации тканей.
- Участвуют в воспалении.
Механизмы тромборезистентности сосудистой стенки:
- Гладкость эндотелия.
- Отрицательный поверхностный заряд.
- Синтез мощного ингибитора агрегации – простациклина
- Синтез тромбомодулина, связывающего и инактивирующего тромбин.
- Синтез белка S.
- Синтез ТПА (тканевого плазминогенного активатора) - тканевого активатора фибринолиза, обеспечивающего лизис образующихся в сосудах тромбов.
- Фиксация на эндотелии кислых мукополисахаридов, в том числе гепарина и комплекса ²гепарин-антитромбин III². (* гепарин вырабатывается околокапиллярными т.к.).
Снижение антитромбической резистентности сосудов наблюдается при:
атеросклерозе, сахарном диабете (патологические липопротеиды связываются с антикоагулянтными факторами сосудистой стенки, снижение продукции простациклина).
.