Основные механизмы вторичных иммунодефицитов. 2 страница
● по происхождению: гуморальные (плазменные) и клеточные.
Источниками медиаторов воспаления могут быть белки крови и межклеточной жидкости, все клетки крови, клетки соединительной ткани, нервные клетки, неклеточные элементы соединительной ткани.
Различают преформированные и вновь образующиеся медиаторы. Преформированные медиаторы синтезируются постоянно без всякого повреждения, накапливаются в специальных хранилищах и высвобождаются немедленно после повреждения (например - гистамин). Синтез других медиаторов начинается после повреждения, как ответная мера. Такие медиаторы называются вновь образующимися (например простагландины).
Повреждение ткани сопровождается активацией специальных протеолитических систем крови, что ведет к появлению в очаге воспаления различных пептидов, выполняющих роль медиаторов воспаления. Вазоактивные кинины образуются так же при активации фибринолитической системы активированным фактором Хагемана, который превращает циркулирующий в крови неактивный плазминоген в активный фермент плазмин. Плазмин расщепляет фибрин (а своевременное переваривание фибрина необходимо для успешного заживления ран). При этом образуются пептиды, способные расширять сосуды и поддерживать увеличенную сосудистую проницаемость. Плазмин активирует систему комплемента.
Система комплемента, включающая около 20 различных белков, активируется кроме фактора Хагемана еще двумя путями: классическим - это комплекс антиген-антитело и альтернативным - это липополисахариды микробных клеток. В воспалении участвуют С3а и С5а компоненты комплемента, которые опсонизируют и лизируют бактерии, вирусы и патологически измененные собственные клетки; способствуют дегрануляции тучных клеток и базофилов с высвобождением медиаторов. Компоненты комплемента вызывают также адгезию, агрегацию и дегрануляцию клеток крови, выход лизосомальных ферментов, образование свободных радикалов, ИЛ-1, стимулируют хемотаксис, лейкопоэз и синтез иммуноглобулинов.
Медиаторы плазменного и клеточного происхождения взаимосвязаны и действуют по принципу аутокаталитической реакции с обратной связью и взаимным усилением.
Нарушение микроциркуляции в очаге воспаления характеризуется изменением тонуса микроциркуляторных сосудов, усиленным током жидкой части крови за пределы сосуда (т.е. экссудацией) и выходом форменных элементов крови (т.е. эмиграцией).
Для сосудистой реакции характерны 4 стадии :
1) кратковременный спазм сосудов,
2) артериальная гиперемия,
3) венозная гиперемия,
4) стаз.
Спазм сосудов возникает при действии повреждающего агента на ткани и связан с тем, что вазоконстрикторы возбуждаются первыми, поскольку они чувствительнее вазодилятаторов. Спазм длится до 40 секунд и быстро сменяется артериальной гиперемией.
Артериальная гиперемия формируется следующими тремя путями:
● как результат паралича вазоконстрикторов;
● как результат воздействия медиаторов с сосудорасширяющей активностью;
● как результат реализации аксон-рефлекса.
Расслабляются прекапиллярные сфинктеры, увеличивается число функционирующих капилляров и кровоток через сосуды поврежденного участка может в десятки раз превышать таковой неповрежденной ткани. Расширение микроциркуляторных сосудов, увеличение количества функционирующих капилляров и повышенное кровенаполнение органа определяет первый макроскопический признак воспаления - покраснение. Если воспаление развивается в коже, температура которой ниже температуры притекающей крови, то температура воспаленного участка повышается - возникает жар. Поскольку в первое время после повреждения линейная и объемная скорость кровотока в участке воспаления достаточно велики, то оттекающая из очага воспаления кровь содержит большее количество кислорода и меньшее количество восстановленного гемоглобина и поэтому имеет яркокрасную окраску. Артериальная гиперемия при воспалении сохраняется недолго (от 15 минут до часа) и всегда переходит в венозную гиперемию, при которой увеличенное кровенаполнение органа сочетается с замедлением и даже полным прекращением капиллярного кровотока.
Венозная гиперемия начинается с максимального расширения прекапиллярных сфинктеров, которые становятся нечувствительными к вазоконстрикторным стимулам и венозный отток затрудняется. После этого замедляется ток крови в капиллярах и приносящих артериолах. Главной причиной развития венозной гиперемии является экссудация - выход жидкой части крови из микроциркуляторного русла в окружающую ткань. Экссудация сопровождается повышением вязкости крови, периферическое сопротивление кровотоку возрастает, скорость тока крови падает. Кроме того, экссудат сдавливает венозные сосуды, что затрудняет венозный отток и также усиливает венозную гиперемию. Развитию венозной гиперемии способствует набухание в кислой среде форменных элементов крови, сгущение крови, нарушение десмосом, краевое стояние лейкоцитов, образование микротромбов. Кровоток постепенно замедляется и приобретает новые качественные особенности из-за повышения гидростатического давления в сосудах: кровь начинает двигаться толчкообразно, когда в момент систолы сердца кровь продвигается вперед, а в момент диастолы кровь останавливается. При дальнейшем повышении гидростатического давления кровь в систолу продвигается вперед, а в момент диастолы возвращается обратно - т.е.возникает маятникообразное движение. Толчкообразное и маятникообразное движение крови определяет возникновение пульсирующей боли. Постепенно экссудация вызывает развитие стаза - обычное явление при воспалении.
Как правило, стаз возникает в отдельных сосудах венозной части микроциркуляторного русла из-за резкого повышения ее проницаемости. При этом жидкая часть крови быстро переходит во внесосудистое пространство и сосуд остается заполненным массой плотноприлежащих друг к другу форменных элементов крови. Высокая вязкость такой массы делает невозможным продвижение ее по сосудам и возникает стаз. Эритроциты образуют "монетные столбики", границы между ними постепенно стираются и образуется сплошная масса в просвете сосуда - сладж (от англ. sludge - тина, грязь).
Механизмы экссудации: экссудация при воспалении обусловлена прежде всего повышением проницаемости микроциркуляторного русла для белка в следствие существенного изменения сосудистого эндотелия. Изменение свойств эндотелиальных клеток микроциркуляторных сосудов - это главная, но не единственная причина экссудации при воспалении. Образованию различного экссудата способствует рост гидростатического давления внутри микроциркуляторных сосудов, связанный с расширением приносящих артериол, увеличение осмотического давления интерстициальной жидкости, обусловленное накоплением во внесосудистом пространстве осмотически активных продуктов распада ткани. Более значительно процесс экссудации выражен в венулах и капиллярах. Экссудация формирует четвертый признак воспаления – припухлость (tumor).
Состав экссудата (exsudatum) - это жидкая часть крови, форменные элементы крови и разрушенные ткани.
По составу экссудата выделяют 5 видов воспаления:
● серозный;
● катаральный (слизистый);
● фибринозный;
● геморрагический;
● гнойный;
● ихорозный.
Функции экссудата - в результате экссудации происходит разбавление концентрации бактериальных и других токсинов и разрушение их поступающими из плазмы крови протеолитическими ферментами. В ходе экссудации в очаг воспаления поступают сывороточные антитела, которые нейтрализуют бактериальные токсины и опсонизируют бактерии. Воспалительная гиперемия обеспечивает переход в очаг воспаления лейкоцитов крови, способствует фагоцитозу. Фибриноген экссудата превращается в фибрин, нити которого создают структуру, облегчающую переход лейкоцитов в рану. Фибрин играет важную роль в процессе заживления ран.
Однако экссудация имеет и отрицательные последствия - отек тканей может привести к удушью или угрожающему для жизни повышению внутричерепного давления. Нарушения микроциркуляции способны привести к ишемическому повреждению тканей. Излишнее отложение фибрина может препятствовать последующему восстановлению поврежденной ткани и способствовать избыточному разрастанию соединительной ткани. Поэтому врач должен осуществлять эффективный контроль за развитием экссудации.
Патофизиология воспаления (Лекция № X) Часть 2.
1. Эмиграция лейкоцитов в очаге воспаления.
2. Функции лейкоцитов в очаге воспаления.
3. Острое и хроническое воспаление.
4. Биологическая сущность воспаления.
5. Диагностика воспаления.
При переходе артериальной гиперемии в венозную лейкоциты постепенно перемещаются из осевого слоя в периферический - пристеночный и начинают прилипать к поверхности эндотелия .Возникает "краевое стояние лейкоцитов" и с этого момента начинается массовая миграция лейкоцитов в очаг воспаления.
Лейкоцит должен преодолеть две преграды: эндотелий и базальную мембрану. Слой эндотелия лейкоциты проходят, протискиваясь между эндотелиальными клетками, а базальную мембрану временно растворяют своими протеазами. Весь процесс перехода лейкоцита через стенку сосуда занимает от 2 до 12 минут и не вызывает повреждения стенки сосуда. Главным место эмиграции лейкоцитов являются посткапиллярные венулы. При остром воспалении прежде всего эмигрируют нейтрофилы и значительно позднее - моноциты. Эозинофилы, базофилы и лимфоциты так же способны к эмиграции. Эмиграция лейкоцитов связана с появлением в очаге воспаления специальных медиаторов хематтрактантов. Наиболее сильными хематтарактантами являются липополисахариды, входящие в состав бактериальных эндотоксинов. К наиболее сильным эндогенным хематтрактантом относятся фрагменты активируемого при воспалении комплемента, особенно С5а, лейкотриен В4, фактор активации тромбоцитов и каликреин.
Эмиграция лейкоцитов в очаг воспаления начинается с адгезии их к эндотелию сосудов микроциркуляторного русла. Адгезивность увеличивается в результате усиленного образования эндотелиальными клетками специальных молекул РНК и соответствующего им белка.
Прохождение лейкоцитов через сосудистую стенку это результат присущей этим клеткам способности к движению - т.е. локомоции, которая так же активируется хематтрактантами. Внутри цитоплазмы лейкоцитов увеличивается концентрация ионов кальция.
Это активирует микротубулярную систему, образующую внутренний скелет клетки, активирует актомиозиновые комплексы, усиливается секреция нейтрофилами их гранулярного содержимого, в том числе нейтрофильных протеаз, способных растворять базальную мембрану сосудов. Взаимодействие хематтрактантов с поверхностными рецепторами лейкоцитов сопровождается активацией различных находящихся в них ферментов, в том числе кальций-зависимой фосфолипазы А2, кальций-зависимых протеиновых киназ: протеинкиназы А и протеинкиназы С.
Под влиянием хематтрактантов в лейкоците на переднем полюсе кортикальный гель превращается в золь, т.е. становится более жидким. В эту разжиженную часть лейкоцита переливается золь его центральной части. Лейкоцит укорачивается сзади и удлиняется спереди. Разжиженная часть кортикального геля переднего полюса с силой выбрасывается назад и тем самым лейкоцит передвигается вперед.
Наибольшей функциональной активностью обладают нейтрофильные лейкоциты. Полиморфноядерные лейкоциты первыми приходят в очаг воспаления, поскольку они более чувствительны, их гораздо больше в крови. Их называют клетками "аварийного реагирования" и одноразового пользования.
Моноциты находятся в крови до 3 суток, уходят в ткани и находятся в них около 10 дней. Часть их дифференцируется в оседлые тканевые макрофаги, часть находится в неактивном состоянии и может вновь активироваться. Поэтому моноциты называют клетками многоразового пользования. Такая последовательность выхода форменных элементов крови за пределы сосуда была выявлена Мечниковым и называется "закон эмиграции" или "стадии клеточной реакции при воспалении":
1) полинуклеарная (нейтрофилы и эозинофилы) до 2 суток,
2) мононуклеарная (моноциты и лимфоциты) до 5-6 дней,
3) фибробластическая, характеризуется скоплением в очаге воспаления гистиоцитов и фибробластов.
Важнейшей функцией лейкоцитов в очаге воспаления является фагоцитоз - т.е. захват, убиение и переваривание бактерий, а так же переваривание продуктов распада тканей и клеток собственного организма.
В ходе фагоцитоза различают 4 стадии :
1) стадия приближения фагоцита к объекту;
2) стадия прилипания фагоцита к объекту;
3) стадия поглощения фагоцитом объекта;
4) стадия внутриклеточных превращений поглощенного объекта.
Первая стадия объясняется способностью фагоцитов к хемотаксису. В механизмах прилипания и последующего поглощения фагоцитом объекта большую роль играют опсонины - антитела и фрагменты комплемента, плазменные белки и лизоцим. Установлено, что определенные участки молекул опсонинов связываются с поверхностью атакуемой клетки, а другие участки той же молекулы - с мембраной фагоцита.
Механизм поглощения не отличается от прилипания - захват осуществляется путем постепенного обволакивания фагоцитом микробной клетки, т.е. по-существу путем прогрессирующего прилипания поверхности фагоцита к поверхности микроба до тех пор, пока весь объект не будет "обклеен" мембраной фагоцита. В следствие этого поглощаемый объект оказывается внутри фагоцита, заключенным в мешок, образованный частью мембраны фагоцитирующей клетки. Этот мешок называется фагосома. Образование фагосомы начинает стадию внутриклеточных превращений поглощенного объекта внутри фагосомы, т.е. вне внутренней среды фагоцита.
Основная часть внутриклеточных превращений поглощенного при фагоцитозе объекта связана с дегрануляцией - т.е.переходом содержимого цитоплазматических гранул фагоцитов внутрь фагосомы. В этих гранулах у всех облигатных фагоцитов содержится большое количество биологически активных веществ преимущественно ферментов, которые убивают и затем переваривают микробы и другие поглощенные объекты. В нейтрофилах имеется 2-3 вида гранул, которые содержат лизоцим - растворяющий микробную стенку, лактоферрин - белок, связывающий железо и тем самым оказывающий бактериостатические действие, миелопероксидазу, нейтральные протеазы, кислые гидролазы, белок, связывающий витамин В12 и другие. Как только образуется фагосома, к ней вплотную подходят гранулы. Мембраны гранул сливаются с мембраной фагосомы и содержимое гранул поступает внутрь фагосомы.
Как уже говорили, нейтрофилы - первые лейкоциты, инфильтрирующие зону воспаления. Они обеспечивают эффективную защиту от бактериальных и грибковых инфекций. Если же рана не инфицирована, то содержание нейтрофилов в ней быстро снижается и через 2 суток в очаге воспаления преобладают макрофаги. Как и нейтрофилы, воспалительные макрофаги - это подвижные клетки, защищающие организм с помощью фагоцитоза от различных инфекционных агентов. Они также способны секретировать лизосомальные ферменты и кислородные радикалы, но отличаются от нейтрофилов рядом качеств, которые делают эти клетки особенно важными на более поздних этапах острого воспаления и в механизмах заживления ран:
1. Макрофаги живут гораздо дольше (месяцы, а нейтрофилы – неделю).
2. Макрофаги способны распознавать, а затем поглощать и разрушать поврежденные и нежизнеспособные клетки собственного организма, в том числе и нейтрофилы. С этим связана их чрезвычайная роль в "уборке" воспалительного экссудата. Макрофаги это главные клетки, участвующие в растворении и удалении из очага воспаления поврежденной соединительной ткани, что необходимо для последующей реконструкции тканей. Они синтезируют и секретируют нейтральные протеазы: эластазу, коллагеназу, активатор плазминогена, разрушающие внеклеточные коллагеновые и эластиновые волокна соединительной ткани. Макрофаги играют одну из ключевых ролей в заживлении ран. У животных в эксперименте, лишенных мононуклеаров, раны не заживают. Это объясняется тем, что макрофаги синтезируют факторы роста для фибробластов и других мезенхимальных клеток, продуцируют факторы, увеличивающие синтез коллагена фибробластами, являются источниками факторов, управляющих различными этапами ангиогенеза - реваскуляризации поврежденной ткани, продуцируют полипептидные гормоны, являющиеся медиаторами "ответа острой фазы" - интерлейкин-1 и ИЛ-6 и фактор некроза опухолей.
Воспаление делят на острое и хроническое. Острое воспаление (inflammatio acuta) развивается в связи с внезапным повреждением - ожогом, отморожением, механической травмой, некоторыми инфекциями. Его продолжительность обычно не превышает нескольких суток. Острое воспаление характеризуется выраженными экссудативными реакциями, в ходе которых вода, белки, форменные элементы крови (в основном лейкоциты) покидают кровоток и поступают в зону повреждения.
Хроническое воспаление (inflammatio chronica) развивается, когда повреждающий агент действует в течение длительного времени. Хроническое воспаление продолжается недели, месяцы и годы. Оно характеризуется не столько экссудацией, сколько пролиферацией фибробластов и сосудистого эндотелия, а также скоплением в очаге воспаления специальных клеток - макрофагов, лимфоцитов, плазматических клеток и фибробластов. Большая часть наиболее тяжелых болезней человека характеризуется как раз хроническим воспалительным процессом - это лепра, ревматоидный артрит, туберкулез, хронический пиелонефрит, сифилис, цирроз печени и так далее. Хроническое воспаление обычно сопровождается необратимыми повреждениями нормальной паренхимы, дефекты которой заполняются фиброзной соединительной тканью, деформирующей пораженные органы.
В оптимальном случае прекращение действия повреждающего агента сопровождается затуханием воспалительного ответа и полным устранением всех последствий самих воспалительных реакций - т.е. "полное разрешение воспаления". Это означает прекращение образования медиаторов и исчезновение их из зоны повреждения, прекращение эмиграции лейкоцитов, восстановление сосудистой проницаемости, удаление жидкости, белков, продуктов распада бактерий и клеток (в том числе нейтрофилов и макрофагов).
Исчезновение медиаторов обусловлено отчасти их спонтанной диффузией из очага воспаления и частично инактивацией различными ферментами, причем система инактивации развивается в ходе самого воспаления. Если повышение проницаемости сосудов не было связано с грубым повреждением эндотелиальных клеток, то проницаемость быстро нормализуется после исчезновения медиаторов.
Большая часть скопившейся в очаге воспаления жидкости удаляется с током лимфы. Отложения фибрина растворяются фибринолитическими ферментами крови, ферментами клеток воспаления и также удаляются по лимфатическим сосудам. Возможно, что по лимфатическим сосудам уходят и макрофаги. Часть макрофагов, нагруженных нетоксичными неразрушенными веществами, может оставаться долгое время в месте бывшего воспаления.
Полное разрешение воспаления создает условия для полного восстановления структуры и функции поврежденных тканей. Однако это бывает только при относительно небольших ранениях органов и тканей, обладающих к тому же высокой способностью к регенерации - кожа, слизистые, паренхима внутренних органов. Неполное разрешение воспаления приводит к тому, что восстановление происходит при помощи рубцевания.
Общая реакция организма на воспаление зависит от локализации, причины, степени повреждения органа, возникновения недостаточности функции органа, реактивности и резистентности организма, иммунитета, состояния желез внутренней секреции, питания,конституции, пола, возраста, ранее перенесенных заболеваний.
Биологическая сущность воспаления.И.И. Мечников 25 лет (с 1882 г.) исследовал фагоцитоз. Его метод сравнительной патологии - изучение процесса в эволюционном аспекте. Он доказал, что воспаление встречается у всех представителей животного мира. У одноклеточных защита и питание совпадают. У низших многоклеточных (губка) фагоцитировать могут все клетки. При формировании зародышевых листков фагоцитоз закрепляется за мезодермой. При формировании сосудистой системы открытого типа (раки) фагоциты проще доставляются в очаг воспаления и у высших к фагоцитарной реакции присоединяется реакция сосудов, нервной системы и соединительной ткани. Это реакция целостного организма, выработанная в процессе эволюции, имеет защитно-приспособительное значение - в основе защиты лежит фагоцитоз, все остальное есть лишь аксессуары воспалительной реакции.
Диагностика воспаления - на видимых участках тканей оно проявляется вышеуказанными признаками: покраснение, повышение температуры, припухлось, боль и нарушение функции.
Методы оценки функциональной оценки фагоцитов:
а) определение функциональной активности лейкоцитов:
1. % фагоцитоза - это экстенсивный показатель % фагоцитирующих клеток на 100 потенциальных фагоцитов,
2. фагоцитарное число - это количество объектов фагоцитоза, захваченных этими 100 фагоцитами,
3. фагоцитарный индекс - или интенсивность поглощения - это количество захваченных объектов фагоцитоза, которое приходится на долю каждого фагоцитирующего лейкоцита,
4. суммарная интенсивность поглощения - это количество объектов фагоцитоза, захваченных фагоцитами, содержащимися в 1 мм3,
5. завершенность фагоцитоза,
6. конгоротовый индекс - скорость исчезновения из крови крупнодисперсной краски при внутривенном введении после повторного исследования венозной крови через 15-20 мин,
7. для оценки степени вакцинации определяют титр антител,
8. Исследуется клеточный состав экссудата,
9. Определение общего количества лейкоцитов и лейкоцитарной формулы.
Зависимость воспалительной реакции от общего состояния - реактивности и резистентности, которые обеспечивают появление, развитие, течение и исход воспаления.
Воспаление может быть:
● нормэргическое - при хорошей реактивности у здоровых лиц,
● гиперэргическое (очень бурное) - при аллергии или у холериков,
● гипоэргическое - как положительная гипо- и анергия при иммунитете и отрицательная гипо- и анергия при низкой реактивности, голодании, истощении регуляторных систем (нервной и эндокринной).
Лихорадка (Лекция № XI).
1.Определение понятия лихорадка и гипертермия.
2.Патогенез клинических проявлений лихорадки.
3.Этиология лихорадки.
4.Патогенез лихорадочной реакции.
Лихорадка (febris, pyrexia) - типовое изменение терморегуляции высших гомойотермных животных и человека на воздействие пирогенных раздражителей,выражающееся перестройкой терморегуляторного гомеостаза организма на поддержание более высокого уровня теплосодержания и температуры тела.
В отличие от лихорадки - гипертермия (hyperthermia - перегревание) - состояние организма, характеризующееся нарушением теплового баланса и повышением теплосодержания организма.
Лихорадка и гипертермия -это типические патологические процессы,общим признаком которых является повышение температуры тела. Главным их отличием является то, что при лихорадке уровень температуры тела не зависит от температуры окружающей среды. При гипертермии имеется прямая зависимость.
По своему биологическому значению лихорадка - это защитно-приспособительная реакция, а гипертермия - это полом, нарушение терморегуляции, отсюда разный подход к ведению больных.
Принято выделять ядро организма и его оболочку. Ядро составляют мозг, грудная, брюшная и тазовая полости. В ядре организма температура жестко фиксирована в пределах 37 градусов - т.е. ядро гомойотермно. А температура оболочки зависит от температуры окружающей среды. Таким образом, оболочка - пойкилотермна.
Какие же механизмы так тонко регулируют теплопродукцию и теплоотдачу? Это осуществляет центр терморегуляции гипоталамуса. Он состоит из трех различных морфологических образований.
1. термочуствительная часть,
2. термоустановочная часть, определяет уровень температуры тела,
3. два эфферентныхобразования:
а) центр теплопродукции,
б) центр теплоотдачи.
Стадии лихорадки:
1) Stadium incrementi - стадия подъема температуры тела,
2) Stadium fastigii - стадия стояния высокой температуры,
3) Stadium decrementi - стадия снижения температуры и возврат ее к норме.
Клиническая характеристика стадий:
1-я стадия - повышение температуры - характеризуется ознобом, сопровождающимся ощущением холода. Патогенез озноба - происходит спазм сосудов кожи и понижение температуры кожи на 10-12 градусов (кроме подмышечной и паховой области). Это вызывает раздражение холодовых рецепторов (ощущение холода) и ответную реакцию на холод - мышечную дрожь. Субъективно все это воспринимается, как озноб. Подъем температуры тела может быть быстрым, а озноб очень сильным и наоборот, медленным, постепенным, с незначительным ознобом или даже без него.
Во второй стадии (патогенез ощущения жара) больной говорит, что он горит от жара. Это ощущение обусловлено расширением сосудов кожи при высокой температуре тела. По особенностям температурной кривой (высоты подъема) в зависимости от характера ее колебаний в течение суток различают следующие виды лихорадки:
1) субфебрильную - до 38 градусов,
2) умеренную - 38-39 градусов,
3) высокую - 39-40 градусов и
4) чрезмерную - гиперпиретическую (41 градус и выше). Во время лихорадки температура тела может доходить до 42 градусов. При превышении этой границы возникают глубокие нарушения функции ЦНС и может возникнуть угроза для жизни больного.
Степень повышения температуры при различных заболеваниях зависит:
1) от реактивности организма (например у холериков температура тела выше),
2) от введения возбуждающих ЦНС веществ: кофеин, фенамин (а наркоз и бромиды снижают реакцию),
3) от пирогенной активности микробов,
4) от интенсивности выработки эндогенных пирогенов, то определяется количеством лейкоцитов,
5) от функционального состояния центров терморегуляции и образования медиаторов.
Типы лихорадочных (температурных) кривых:
1) постоянная температурная кривая (febris continua) - колебания в пределах не более 1 градуса,
2) ремиттирующая - febris remittens - или послабляющая (колебания температуры в пределах 1,5 - 2 градусов),
3) перемежающаяся или интермиттирующая - febris intermittens- это правильное чередование нормальной температуры с периодами подъема,
4) возвратная - febris recurrens -5-7 дней лихорадка и 3-4 дня норма, т.е. промежутки между лихорадочным периодом и периодами нормы, как правило, не одинаковые.
5) изнуряющая или гектическая - febris hectica колебания температуры в течение суток доходят до 3-5 градусов (утром норма, вечером 40 градусов). При этом лихорадка может быть атипичной, когда утром температура выше, чем вечером.
Патогенез 3 стадии (снижения температуры) проявляется клинически потоотделением. Потоотделение является основным видом отдачи тепла в период снижения температуры и возврата ее к норме. Температура тела может падать быстро (критически) и медленно (литически). Быстрое падение температуры может быть опасным, особенно у лиц пожилого возраста, перенесших инфаркт миокарда или имеющих кардиосклероз. Кризис может привести к коллапсу от острой сердечной недостаточности.
Этиологические факторы лихорадки. Они делятся на инфекционные и неинфекционные: это липополисахариды микробов, их экзо- и эндотоксины, вирусы, риккетсии, клетки чужеродного трансплантата, продукты распада собственных тканей, лимфокины, хемотаксины, комплекс аллерген-антитело, аллергены.
Лихорадка вызывается особыми веществами - пирогенами. Они по происхождению делятся на:
1. Экзопирогены (из эндотоксинов микробов - бактериальные).
2. Эндопирогены (клеточные).
Характеристика экзопирогенов: по химическому строению - это высокомолекулярные липополисахариды.
Установлено, что:
1) экзопирогены вызывают лихорадку опосредованно через образование эндопирогенов, поэтому лихорадка развивается через 45-60 минут и максимум ее через 3-4 часа,
2) не токсичны,
3) термоустойчивы (для разрушения надо автоклавировать в течение 1-2 часов при температуре 200 градусов),
4) не аллергенны,
5) не антигенны,
6) но несут на себе антигенную химическую специфичность - т.е. являются гаптенами. Для приобретения антигенных свойств они должны соединиться с белками клеток и тканей,