Все растения – это живые организмы.

Все растения питаются влагой.

В приведенном примере первые два суждения являются посылками, а третье – выводом. Понятно, что посылки должны быть истинными суждениями и должны быть связаны между собой. Если хотя бы одна из посылок ложна, то и вывод ложен:

Все птицы – это млекопитающие животные.

Все растения – это живые организмы. - student2.ru Все воробьи – это птицы.

Все воробьи – это млекопитающие животные.

Как видим, в приведенном примере ложность первой посылки приводит к ложному выводу, несмотря на то, что вторая посылка является истинной. Если посылки между собой не связаны, то вывод из них сделать невозможно. Например, из следующих двух посылок никакого вывода не следует:

Все планеты – это небесные тела.

Все сосны являются деревьями.

Все растения – это живые организмы. - student2.ru ?

Обратим внимание на то, что умозаключения состоят из суждений, а суждения – из понятий, т.е. одна форма мышления входит в другую в качестве составной части.

Все умозаключения делятся на непосредственныеи опосредованные.

В непосредственных умозаключениях вывод делается из одной посылки. Например:

Все растения – это живые организмы. - student2.ru Все цветы являются растениями.

Некоторые растения являются цветами.

В опосредованных умозаключениях вывод делается из нескольких посылок. Например:

Все рыбы – это живые существа.

Все растения – это живые организмы. - student2.ru Все караси – это рыбы.

Все караси – это живые существа.

Поскольку непосредственные умозаключения представляют собой различные логические операции с суждениями, то под умозаключениями подразумеваются, прежде всего, опосредованные умозаключения. В дальнейшем речь пойдет именно о них.

2. На какие виды делятся умозаключения?

Умозаключения, или опосредованные умозаключения делятся на три вида. Они бывают дедуктивными, индуктивнымии умозаключениями по аналогии.

Дедуктивные умозаключенияили дедукция(от лат.deductio – выведение) – это умозаключения, в которых из общего правила делается вывод для частного случая (из общего правила выводится частный случай).

Например:

Все звезды излучают энергию.

Все растения – это живые организмы. - student2.ru Солнце – это звезда.

Солнце излучает энергию.

Как видим, первая посылка представляет собой общее правило, из которого (при помощи второй посылки) вытекает частный случай в виде вывода: если все звезды излучают энергию, значит Солнце тоже ее излучает, потому что оно является звездой. В дедукции рассуждение идет от общего к частному, от большего к меньшему, знание сужается, в силу чего дедуктивные выводы достоверны, т.е. точны, обязательны, необходимы и т.п. Посмотрим еще раз на приведенный выше пример. Мог бы из двух данных посылок вытекать иной вывод, кроме того, который из них вытекает? Не мог! Вытекающий вывод – единственно возможный в этом случае. Изобразим отношения между понятиями, из которых состояло наше умозаключение, кругами Эйлера. Объемы трех понятий: звезды; тела, излучающие энергию; Солнце схематично расположатся следующим образом:

 
  Все растения – это живые организмы. - student2.ru

Если объем понятия звезды включается в объем понятия тела, излучающие энергию, а объем понятия Солнце включается в объем понятия звезды, то объем понятия Солнце автоматическивключается в объем понятия тела, излучающие энергию, в силу чего дедуктивный вывод и является достоверным.

Несомненное достоинство дедукции, конечно же, заключается в достоверности ее выводов. Вспомним, известный литературный герой Шерлок Холмс пользовался дедуктивным методом при раскрытии преступлений. Это значит, что он строил свои рассуждения таким образом, чтобы из общего выводить частное. В одном произведении, объясняя доктору Уотсону сущность своего дедуктивного метода, он приводит такой пример. Около убитого полковника Морена сыщики Скотлэнд-Ярда обнаружили выкуренную сигару и решили, что полковник выкурил ее перед смертью. Однако, он (Шерлок Холмс) неопровержимо доказывает, что полковник Морен не мог выкурить эту сигару, потому что он носил большие, пышные усы, а сигара выкурена до конца, т.е., если бы ее курил Морен, то он непременно подпалил бы свои усы. Следовательно, сигару выкурил другой человек. В этом рассуждении вывод выглядит убедительно именно потому, что он дедуктивный: из общего правила (Любой человек с большими, пышными усами не может выкурить сигару до конца) выводится частный случай (Полковник Морен не мог выкурить сигару до конца, потому что носил такие усы). Приведем рассмотренное рассуждение к принятой в логике стандартной форме записи умозаключений в виде посылок и вывода:

Любой человек с большими, пышными усами не может выкурить сигару до конца.

Все растения – это живые организмы. - student2.ru Полковник Морен носил большие, пышные усы.

Полковник Морен не мог выкурить сигару до конца.

Индуктивные умозаключенияили индукция(от лат.inductio – наведение) – это умозаключения, в которых из нескольких частных случаев выводится общее правило (несколько частных случаев как бы наводят на общее правило). Например:

Юпитер движется.

Марс движется.

Венера движется.

Все растения – это живые организмы. - student2.ru Юпитер, Марс, Венера – это планеты.

Все планеты движутся.

Как видим, первые три посылки представляют собой частные случаи, четвертая посылка подводит их под один класс объектов, объединяет их, а в выводе говорится обо всех объектах этого класса, т.е. формулируется некое общее правило (вытекающее из трех частных случаев). Легко увидеть, что индуктивные умозаключения строятся по принципу, противоположному принципу построения дедуктивных умозаключений. В индукции рассуждение идет от частного к общему, от меньшего к большему, знание расширяется, в силу чего индуктивные выводы, в отличие от дедуктивных, не достоверны, а вероятностны. В рассмотренном выше примере индукции признак, обнаруженный у некоторых объектов какой-то группы, перенесен на все объекты этой группы, сделано обобщение, которое почти всегда чревато ошибкой: вполне возможно наличие в группе каких-то исключений, и даже если множество объектов из некой группы характеризуется каким-то признаком, то это не означает с достоверностью, что таким признаком характеризуются все объекты данной группы. Вероятностный характер выводов является, конечно же, недостатком индукции. Однако, ее несомненное достоинство и выгодное отличие от дедукции, которая представляет собой сужающееся знание, заключается в том, что индукция – это расширяющееся знание, способное приводить к новому, в то время как дедукция – это разбор старого и уже известного.

Умозаключения по аналогииили просто аналогия (от греч.analogia – соответствие) – это умозаключения, в которых на основе сходства предметов (объектов) в одних признаках делается вывод об их сходстве и в других признаках. Например:

Планета Земля расположена в солнечной системе, на ней есть атмосфера, вода и жизнь.

Все растения – это живые организмы. - student2.ru Планета Марс расположена в солнечной системе, на ней есть атмосфера и вода.

Вероятно, на Марсе есть жизнь.

Как видим, сравниваются (сопоставляются) два объекта (планета Земля и планета Марс), которые сходны между собой в некоторых существенных, важных признаках (находиться в солнечной системе, иметь атмосферу и воду). На основе данного сходства делается вывод о том, что, возможно, эти объекты сходны между собой и в других признаках: если на Земле есть жизнь, а Марс во многом похож на Землю, то не исключено наличие жизни и на Марсе. Выводы аналогии, как и выводы индукции, вероятностны.

О разновидностях дедуктивных умозаключений пойдет речь в следующей теме, а в этой далее более подробно будут рассмотрены индуктивные умозаключения и умозаключения по аналогии.

3. Каковы виды и правила индукции?

Индукция бывает полнойи неполной. В полной индукции перечисляются все объекты из какой-либо группы и делается вывод обо всей этой группе. Например, если в посылках индуктивного умозаключения перечисляются все девять крупных планет Солнечной системы, то такая индукция является полной:

Меркурий движется.

Венера движется.

Земля движется.

Марс движется.

……………………

Плутон движется.

Все растения – это живые организмы. - student2.ru Меркурий, Венера, Земля, Марс, …, Плутон – это крупные планеты Солнечной системы.

Все крупные планеты Солнечной системы движутся.

В неполной индукции перечисляются некоторые объекты из какой-либо группы и делается вывод обо всей этой группе. Например, если в посылках индуктивного умозаключения перечисляются не все девять крупных планет Солнечной системы, а только три из них, то такая индукция является неполной:

Меркурий движется.

Венера движется.

Земля движется.

Все растения – это живые организмы. - student2.ru Меркурий, Венера, Земля – это крупные планеты Солнечной системы.

Все крупные планеты Солнечной системы движутся.

Понятно, что выводы полной индукции достоверны, а неполной – вероятностны, однако полная индукция встречается редко, и поэтому под индуктивными умозаключениями обычно подразумевается неполная индукция.

Чтобы повысить степень вероятности выводов неполной индукции, следует соблюдать следующие важные правила.

1. Необходимо подбирать как можно больше исходных посылок.Для примера рассмотрим следующую ситуацию. Требуется проверить уровень успеваемости учащихся в некой школе. Предположим, что всего в ней учится (учитывая все классы и параллели) 1000 человек. По методу полной индукции надо протестировать на предмет успеваемости каждого ученика из этой тысячи. Поскольку сделать это довольно сложно, можно использовать метод неполной индукции: протестировать какую-то часть учащихся, и сделать общий вывод об уровне успеваемости в данной школе. (Понятно, что различные социологические опросы также базируются на применении неполной индукции). Очевидно, что чем большее количество учеников подвергнется тестированию, тем более надежной будет база для индуктивного обобщения, и более точным получится вывод. Однако просто большего количества исходных посылок, как того требует рассматриваемое правило, для повышения степени вероятности индуктивного обобщения недостаточно. Допустим, тестирование пройдет немалое количество учащихся, но, волей случая, среди них окажутся одни только неуспевающие. В этой ситуации мы придем к ложному индуктивному выводу о том, что уровень успеваемости в данной школе очень низок. Поэтому первое правило дополняется вторым.

2. Необходимо подбирать разнообразные посылки. Возвращаясь к нашему примеру, отметим, что множество тестируемых должно быть не просто по возможности большим, но и специально, по системе, сформированным, а не случайно подобранным, т.е. надо позаботиться о том, чтобы в него вошли учащиеся (примерно в одинаковом количественном отношении) из разных классов, параллелей и т.п. И, наконец, третье правило неполной индукции предписывает следующее.

3. Необходимо делать вывод только на основе существенных признаков.Если, допустим, во время тестирования выясняется, что ученик 10 класса не знает наизусть всю периодическую систему химических элементов, то этот факт (признак) является несущественным для вывода о его успеваемости. Однако, если тестирование показывает, что ученик 10 класса частицу «не» с глаголом пишет слитно, то этот факт (признак) следует признать существенным, или важным для вывода об уровне его образованности и успеваемости.

Первая ошибка, часто встречающаяся в неполной индукции, называется поспешным обобщением. Скорее всего, каждый из нас, хорошо с ней знаком. Если некоторые объекты из какой-либо группы обладают неким признаком, то это вовсе не означает, что данным признаком характеризуется вся группа без исключения. Из истинных посылок индуктивного умозаключения может вытекать ложный вывод, если допустить поспешное обобщение. Например:

К. учится плохо.

Н. учится плохо.

С. учится плохо.

Все растения – это живые организмы. - student2.ru К., Н., С. – это ученики 10 «А».

Все ученики 10 «А» учатся плохо.

Неудивительно, что поспешное обобщение лежит в основе многих голословных утверждений, слухов и сплетен.

Вторая ошибка носит длинное и, на первый взгляд, странное название: после этого, значит по причине этого(лат. post hoc, ergo propter hoc). В данном случае речь идет о том, что если одно событие происходит после другого, то это не означает с необходимостью их причинно-следственную связь. Два события могут быть связаны всего лишь временной последовательностью (одно – раньше, другое – позже). Когда мы говорим, что одно событие обязательно является причиной другого, потому что одно из них произошло раньше другого, то допускаем логическую ошибку. Например, в следующем индуктивном умозаключении обобщающий вывод является ложным, несмотря на истинность посылок:

Позавчера двоечнику Н. перебежала дорогу черная кошка, и он получил двойку.

Вчера двоечнику Н. перебежала дорогу черная кошка, и его родителей вызвали в школу.

Все растения – это живые организмы. - student2.ru Сегодня двоечнику Н. перебежала дорогу черная кошка, и его исключили из школы.

Во всех несчастьях двоечника Н. виновата черная кошка.

Неудивительно, что ошибка «после этого, значит по причине этого» лежит в основе многих небылиц, суеверий и мистификаций. Обратим внимание на то, что слова “мистика” (лат. mistikos – таинственный) и “мистификация” (лат. mistikos – таинственный + facere – делать) обозначают различные явления: мистика – это что-то действительно таинственное, непостижимое, сверхъестественное, а мистификация – это преднамеренное введение кого-то в заблуждение, путем искусственного создания чего-то таинственного и непостижимого там, где ничего подобного нет.

Третья ошибка, широко распространенная в неполной индукции, называется подмена условного безусловным. Рассмотрим индуктивное умозаключение, в котором из истинных посылок вытекает ложный вывод:

Дома вода кипит при температуре 1000 С.

На улице вода кипит при температуре 1000 С.

В лаборатории вода кипит при температуре 1000 С.

Все растения – это живые организмы. - student2.ru Вода везде кипит при температуре 1000 С.

Мы знаем, что высоко в горах вода кипит при более низкой температуре, что связано с изменением атмосферного давления. (Известный отечественный поруляризатор науки Я. И. Перельман в одной из своих книг отмечает, что если кто-нибудь стал бы кипятить воду на планете Марс, то вода там закипала бы при температуре в 45 градусов по Цельсию, так что кипяток, как то ни удивительно, не всегда и не везде является горячим.) То, что проявляется в одних условиях, может не проявляться в других. В посылках рассмотренного примера присутствует условное (т.е. происходящее в определенных условиях), которое подменяется безусловным (т.е. происходящим во всех условиях одинаково, не зависящим от них) в выводе.

4. Каковы виды и правила умозаключений по аналогии?

В умозаключениях по аналогии на основе сходства предметов в одних признаках делается вывод об их сходстве и в других признаках. Структура аналогии может быть представлена следующей схемой:

Предмет А имеет признаки а, в, с, d.

Все растения – это живые организмы. - student2.ru Предмет В имеет признаки а, в, с.

Вероятно, предмет В имеет признак d,

где А и В – это сравниваемые или уподобляемые друг другу предметы (объекты); а, в, с – сходные признаки; d – это переносимый признак. Приведем пример умозаключения по аналогии.

Сочинения философа Секста Эмпирика выпущены издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей, комментариями и предметно-именным указателем.

Все растения – это живые организмы. - student2.ru В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона, – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей и комментариями.

Скорее всего, выпущенные сочинения Фрэнсиса Бэкона так же, как и сочинения Секста Эмпирика, снабжены предметно-именным указателем.

В данном случае сравниваются, или сопоставляются два объекта – ранее выпущенные сочинения Секста Эмпирика и выходящие в свет сочинения Фрэнсиса Бэкона. Сходные признаки этих двух книг состоят в том, что они выпускаются одним и тем же издательством, в одной и той же серии, снабжены вступительными статьями и комментариями. На основании этого с большой степенью вероятности можно утверждать, что если сочинения Секста Эмпирика снабжены предметно-именным указателем, то им будут снабжены и сочинения Фрэнсиса Бэкона. Таким образом, наличие предметно-именного указателя является переносимым признаком в рассмотренном примере.

Умозаключения по аналогии делятся на два вида.

В аналогии свойствсравниваются два предмета, а переносимым признаком является какое-либо свойство этих предметов. Приведенный выше пример представляет собой аналогию свойств.

В аналогии отношенийсравниваются две группы предметов, а переносимым признаком является какое-либо отношение между предметами внутри этих групп. Пример аналогии отношений:

В математической дроби числитель и знаменатель находятся в обратном отношении: чем больше знаменатель, тем меньше числитель.

Все растения – это живые организмы. - student2.ru Человека можно сравнить с математической дробью: числитель ее – это то, что он собой представляет на самом деле, а знаменатель – то, что он о себе думает, как себя оценивает.

Вероятно, что чем выше человек себя оценивает, тем хуже он становится на самом деле.

Как видим, сравниваются две группы объектов. Одна – это числитель и знаменатель в математической дроби, а другая – реальный человек и его самооценка. Причем, отношение обратной зависимости между объектами переносится из первой группы во вторую.

В силу вероятностного характера своих выводов аналогия, конечно же, более близка к индукции, чем к дедукции. Неудивительно поэтому, что основные правила аналогии, соблюдение которых позволяет повысить степень вероятности ее выводов, во многом напоминают уже известные нам правила неполной индукции. Во-первых, необходимо делать вывод на основе возможно большего количества сходных признаков у уподобляемых предметов. Во-вторых, эти признаки должны быть разнообразными. В-третьих, сходные признаки должны являться существенными для сравниваемых предметов. В-четвертых, между сходными признаками и переносимым признаком должна присутствовать необходимая, или закономерная связь. Первые три правила аналогии фактически повторяют правила неполной индукции. Пожалуй, наиболее важным является четвертое правило о связи сходных признаков и переносимого признака. Вернемся к примеру аналогии, рассмотренному в начале данного параграфа. Переносимый признак, – наличие предметно-именного указателя в книге, – тесно связан со сходными признаками – издательство, серия, вступительная статья, комментарии (книги такого жанра обязательно снабжаются предметно-именным указателем). Если переносимый признак (например, объем книги) не связан закономерно со сходными признаками, то вывод умозаключения по аналогии может получиться ложным:

Сочинения философа Секста Эмпирика выпущены издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей, комментариями и имеют объем в 590 страниц.

Все растения – это живые организмы. - student2.ru В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона, – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей и комментариями.

Скорее всего, выпущенные сочинения Фрэнсиса Бэкона, так же, как и сочинения Секста Эмпирика, имеют объем в 590 страниц.

Резюме: Умозаключение – это форма мышления, состоящая из суждений, в которой из нескольких исходных суждений (посылок) вытекает новое суждение (вывод). Умозаключения бывают непосредственными (вывод делается из одной посылки) и опосредованными (вывод делается из нескольких посылок). Опосредованные умозаключения бывают дедуктивными (из общего правила выводится частный случай), индуктивными (из нескольких частных случаев выводится общее правило) и по аналогии (из сходства предметов в одних признаках выводится их сходство в других признаках). Дедукция дает достоверные выводы, а индукция и аналогия – вероятностные. Индукция бывает полной и неполной. Основной ошибкой в неполной индукции является поспешное обобщение. Весь бесконечный по содержанию мир наших рассуждений реализуется в формах дедукции, индукции и аналогии.

Вопросы для самопроверки

1. Что такое умозаключение? Какова его структура? Приведите три примера умозаключений и выделите в каждом из них посылки и вывод. Чем отличаются непосредственные умозаключения от опосредованных? Приведите по три примера непосредственных и опосредованных умозаключений.

2. Что представляют собой дедуктивные умозаключения? Почему выводы дедукции достоверны? Что такое индуктивные умозаключения? Чем отличается индукция от дедукции? В чем причина вероятностного характера индуктивных выводов? Каким образом строятся умозаключения по аналогии? Чем они отличаются от дедуктивных и индуктивных умозаключений?

3. Приведите три примера дедуктивных умозаключений и переделайте их в индуктивные. Приведите три примера индуктивных умозаключений (других по сравнению с предыдущими) и переделайте их в дедуктивные. Приведите пример аналогии и рассмотрите его структуру, указав сопоставляемые объекты, сходные признаки и признак, который переносится с одного объекта на другой.

4. Что такое индуктивное умозаключение? Чем оно отличается от дедуктивного? В чем заключается разница между полной и неполной индукцией? Придумайте один пример для полной индукции и один – для неполной. Каковы основные правила неполной индукции?

5. Каковы основные ошибки, широко распространенные в неполной индукции? К каким негативным явлениям в духовной жизни человека и общества они могут привести? Придумайте по одному примеру для каждой ошибки в неполной индукции.

6. Что представляют собой умозаключения по аналогии? Какова их структура? Придумайте пример умозаключения по аналогии. Чем отличается аналогия свойств от аналогии отношений? Приведите по одному примеру для каждого из этих видов аналогии.Каковы основные правила умозаключений по аналогии, соблюдение которых позволяет повысить степень вероятности ее выводов?

Литература

1. Гетманова А. Д. Учебник по логике. – М.: Че Ро, 2000.

2. Гусев Д. А. Логика. Учебное пособие для вузов. – М.: ЮНИТИ-ДАНА, 2004.

3. Гусев Д. А. Конспект лекций с задачами. Учебное пособие для вузов. –М.: Айрис Пресс, 2005.

4. Гусев Д. А. Логика. Учебное пособие. – М.: МПСИ, 2005.

5. Гусев Д. А. Тестовые задания и занимательные задачи по логике. – М.: МПСИ, 2003.

6. Ивин А.А. Логика. Учебное пособие. – М.: Знание, 1998.

7. Ивин А.А. Практическая логика. Задачи и упражнения. – М.: Просвещение, 1996.

8. Ивин А.А. Строгий мир логики. – М., 1988.

9. Краткий словарь по логике. – М., 1991.

10. Свинцов В. И. Логика. Элементарный курс для гуманитарных специальностей. – М., 1998.

Наши рекомендации