Капсула, микрокапсула, слизь
Капсула - слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.
Жгутики
Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.
Пили
Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.
Споры
Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.
Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.
2.3. Процесс спорообразования (споруляция) проходит ряд стадий, в течение которых часть цитоплазмы и хромосома отделяются, окружаясь цитоплазматической мембраной; образуется проспора, затем формируется многослойная плохо проницаемая оболочка. Спорообразование сопровождается интенсивным потреблением проспорой, а затем формирующейся оболочкой споры дипиколиновой кислоты и ионов кальция. После формирования всех структур спора приобретает термоустойчивость, которую связывают с наличием дипиколината кальция. Спорообразование, форма и расположение спор в клетке (вегетативной) являются видовым свойством бактерий, что позволяет отличать их друг от друга. Форма спор может быть овальной, шаровидной, расположение в клетке — терминальное, т.е. на конце палочки (возбудитель столбняка), субтерминальное — ближе к концу палочки (возбудители ботулизма, газовой гангрены) и центральное (сибиреязвенная бацилла).
Специфические элементы споры, включая многослойную оболочку и дипиколинат кальция обусловливают ее свойства: спора долго может сохраняться (в почве, например, возбудители сибирской язвы и столбняка могут сохраняться десятки лет). В благоприятных условиях споры прорастают, проходя три последовательные стадии: активацию, инициацию, вырастание. При этом из одной споры образуется одна бактерия. Активация — это готовность к прорастанию. При температуре 60—80 °С спора активируется для прорастания. Инициация прорастания длится несколько минут. Стадия вырастания характеризуется быстрым ростом, сопровождающимся разрушением оболочки и выходом проростка.
3. Строение и классификация грибов
Грибы {Fungi, Mycetes) относятся к царству Fungi. Это разнородные нефотосинтезирующие (бесхлоро- фильные) эукариотические микроорганизмы.
Грибы имеют ядро с ядерной оболочкой, цитоплазму с орга- неллами, цитоплазматическую мембрану и мощную клеточную стенку, состоящую из нескольких типов полисахаридов (ман- нанов, глюканов, целлюлозы, хитина), а также белка, липидов и др. Цитоплазматическая мембрана содержит фосфолипиды и стеролы. Грибы состоят из длинных тонких нитей (гиф), сплетающихся в грибницу или мицелий.
Гифы низших грибов не имеют перегородок. У высших грибов гифы разделены перегородками.
Грибы размножаются спорами — половым (телеоморфы) и бесполым (аноморфы) способами, половым путем с образованием гамет и других форм, а также вегетативным путем (почкованием или фрагментацией гиф).
Грибы, размножающиеся половым и бесполым путем, относятся к совершенным. Несовершенными называются грибы, у которых отсутствует или еще не описан половой путь размножения.
Бесполое размножение осуществляется с помощью эндогенных спор, созревающих внутри круглой структуры, — спорангия (рис.2.6,а) и экзогенных спор — конидий, формирующихся на кончиках плодоносящих гиф (рис.2.6,б,в). Различают два основных типа конидий: артроконидии (артроспоры), или таллоко-нидии (старое название — оидии, таллоспоры), образуются путем равномерного септирования и расчленения гиф; бластоконидии образуются в результате почкования. К бесполым формам относят также хламидоспоры (толстостенные клетки или комплекс мелких клеток) и склероции — многоклеточные покоящиеся органы грибов, способствующие их выживанию.
Грибы подразделяют на 7 классов: хнтридиомицеты, гифохитридиомицеты, оомицеты, тгомицеты, аскоми- цеты, базидиомицеты, дейтеромицеты.
К низшим грибам относятся: хитридиомицеты, или водные грибы, ведущие сапрофитический образ жизни или поражающие водоросли; гифохитридиомицеты, имеющие сходство с хитридиомицетами и оомицетами; оомицеты — паразиты высших растений и водные плесени; зигомицеты, включающие представителей рода Мисог, распространенные в почве и воздухе и способные вызывать мукоромикоз легких, головного мозга и других органов человека и животных. Половое размножение (оогамия) у зигомицетов осуществляется путем образования зигоспор, или ооспор. При бесполом размножении этих грибов на плодоносящей гифе, спорангиеносце, образуется спорангий— шаровидное утолщение с оболочкой, содержащее многочисленные спорангиоспоры (см. рис.2.6,а).
Высшие грибы представлены аскомицетами и базидиомице- тами (совершенными грибами), а также дейтеромицетами (несовершенными грибами). Аскомицеты (или сумчатые грибы) имеют септированный мицелий (за исключением одноклеточных дрожжей). Свое название они получили от основного органа плодоношения — сумки, или аска, содержащего 4 или 8 гаплоидных половых спор (аскоспор). К аскомицетам относятся представители родов Aspergillus, Penicillium и др., отличающиеся особенностями формирования плодоносящих гиф. У Aspergillus (леечная плесень) на концах плодоносящих гиф, конидиенос- цах, имеются утолщения — стеригмы, на которых образуются цепочки спор — конидии. Некоторые виды аспергилл могут вызывать аспергиллезы и афлатоксикозы. Плодоносящая гифа у грибов рода Penicillium (кистевик) напоминает кисточку, так как из нее (на конидиеносце) образуются утолщения, разветвляющиеся на более мелкие структуры — стеригмы, на которых находятся цепочки конидий. Пенициллы могут вызывать заболевания — пенициллиозы.
Представителями аскомицетов являются и дрожжи — одноклеточные грибы, утратившие способность к образованию истинного мицелия. Дрожжи имеют овальную форму клеток с диаметром 3—15 мкм. Они размножаются почкованием, бинарным делением (делятся на две равные клетки) или половым путем с образованием аскоспор.
Заболевания, вызываемые некоторыми видами дрожжей, получили название дрожжевых микозов. К ас- комицетам относится и возбудитель эрготизма (спорынья Claviceps purpurea), паразитирующий на злаках. Многие виды аско- мицетов являются продуцентами антибиотиков, используются в биотехнологии.
Базидиомицеты — шляпочные грибы с септиро- ванным мицелием. Дейте- ромицеты, несовершенные грибы (Fungi imperfecti), являются условным классом грибов, который объединяет грибы с септированным мицелием, не имеющими полового размножения. Они размножаются только бесполым путем, образуя конидии. К несовершенным грибам относятся грибы рода Candida, поражающие кожу, слизистые оболочки и внутренние органы (кандидоз). Они имеют овальную форму (рис.2.7), диаметр 2—5 мкм, делятся почкованием, образуют псевдогифы в виде удлиненных клеток, на концах которых находятся хламидоспоры. Эти грибы называются дрожжеподобными в отличие от истинных дрожжей (аскомицеты), образующих аскоспоры и не имеющих псевдогиф и хламидоспор. Подавляющее большинство грибов, вызывающих заболевания у человека (микозы), относится к несовершенным грибам
4. Строение и классификация простейших
Простейшие — эукариотические одноклеточные микроорганизмы, составляющие подцарство Protozoa царства животных (Animalia). Простейшие включают 7 типов, из которых три типа (Sarcomastigophora, Apicomplexa, Ciliophora) имеют представителей, вызывающих заболевания у человека. Размеры простейших колеблются в среднем от 5 до 30 мкм.
Снаружи простейшие окружены мембраной (пелликулой) — аналогом цитоплазматической мембраны клеток животных. Они имеют ядро с ядерной оболочкой и ядрышком, их цитоплазма состоит из эндоплазматического ретикулума, митохондрий, ли- зосом, многочисленных рибосом и др. Передвижение простей-
ших осуществляется посредством жгутиков, ресничек и путем образования псевдоподий. Некоторые простейшие имеют опорные фибриллы. Простейшие могут питаться в результате фагоцитоза или образования особых структур. Многие из них при неблагоприятных условиях образуют цисты — покоящиеся стадии, устойчивые к изменению температуры, влажности и др. При окраске по Романовскому—Гимзе ядро простейших окрашивается в красный, а цитоплазма — в синий цвет.
Тип Sarcomastigophora. Подтип Mastigophora (жгутиконосцы) включает следующие патогенные представители: трипаносома — возбудитель африканского трипаносомоза (сонная болезнь); лей- шмании — возбудители кожной и висцеральной форм лейшма- ниозов; трихомонады — возбудителя трихомоноза; лямблию — возбудителя лямблиоза. Эти простейшие характеризуются наличием жгутиков: один — у лейшманий (рис.2.8,а), 4 свободных жгутика и короткая ундулирующая мембрана — у трихомонад (рис.2.8,б). К подтипу Sarcodina (саркодовые) относится дизентерийная амеба (рис.2.8,в) — возбудитель амебной дизентерии человека. Морфологически с ней сходна непатогенная кишечная амеба. Эти простейшие передвигаются путем образования псевдоподий, с помощью которых происходят захват и погружение в цитоплазму клеток питательных веществ. Половой путь раз-множения у амеб отсутствует. При неблагоприятных условиях они образуют цисту.
Тип Apicomplexa. В классе Sporozoa (споровики) патогенными представителями являются возбудители токсоплазмозов (рис.2.8,г), кокцидиозов, саркоцистозов, малярии (рис.2.8,д). Каждый из этих представителей имеет сложное строение и свои особенности жизненного цикла. Так, например, жизненный цикл возбудителя малярии характеризуется чередованием полового размножения (в организме комаров Anopheles) и бесполого (в клетках тканей и эритроцитах человека, где они размножаются путем множественного деления). Токсоплазмы имеют форму полулу- ний. Человек заражается ими от животных, возбудитель может передаваться через плаценту, поражая центральную нервную систему и глаза плода.
Тип Ciliophora. Патогенным представителем является возбудитель балантидиаза, он поражает толстую кишку человека. Балаи- тидии подвижны, имеют многочисленные реснички.
5. Темнополъная микроскопия. Микроскопия в темном поле зрения основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Это достигается с помощью параболоид- или кардиоид-конденсора, который заменяет обычный конденсор в биологическом микроскопе (рис. 6, а, б).
Параболоид-конденсор имеет затемнение в центре, задерживающее центральные лучи света, и внутреннюю зеркальную поверхность для отражения лучей. В кардиоид-конденсоре лучи сначала отражаются от выпуклой поверхности, затем от вогнутой. Краевые лучи, выходящие из темнопольного конденсора, проходят в косом направлении и не попадают в объектив, в связи с чем поле зрения остается темным. В объектив поступают отраженные от объекта лучи, которые образуют весьма характерное изображение ярко светящихся контуров микробных клеток и других частиц, находящихся в препарате на темном фоне (рис. 7).
Фазово-контрастная микроскопия. Основана на превращении изменений по фазе, возникающих при прохождении световой волны через так называемые фазовые (прозрачные) объекты, в изменения по амплитуде, которые улавливаются глазом. С помощью фазово-контрастного приспособления фазовые изменения световых волн, проходящих через объект, превращаются в амплитудные и прозрачные объекты становятся видимыми в микроскоп. При этом они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негатив- ным фазовым контрастом — светлое изображение объекта на темном фоне.
Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное приспособление КФ-1 или КФ-4 (рис. 8). В их комплект входят:
1. Специальные объективы с фазовыми кольцами, изменяющие фазу и уменьшающие амплитуду световой волны. На оправе фазовых объективов обозначен дополнительный буквенный индекс «Ф»: Ф-10, Ф-20, Ф-40и ФОИ-90.
2. Фазовый конденсор с револьвером спепиаЛьных кольцевых диафрагм для каждого объектива. Индексом «О» обозначено отверстие для наблюдения препарата обычным методом с ирисовой диафрагмой.
3. Вспомогательный микроскоп малого увеличения, которым заменяют окуляр при наблюдении за центровкой освещения.
Прн фазово-контрастной микроскопии используют осветители типа ОИ-7 или ОИ-19.
Люминесцентная (или флюоресцентная) микроскопия.
Основана на явлении фотолюминесценции (рис. 9).
Люминесценция (от lumen — сеет) — свечение веществ, возникающее после воздействия на них каких-либо источников энергии: света, электронных лучей, ионизирующего излучения. Фотолюминесценция — люминесценция объекта под влиянием света. Свет люминесценции имеет ббльшую длину волны, чем свет возбуждающий, поэтому возбуждают люминесценцию коротковолновыми лучами. Если освещать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта. Длина волны излучаемого света (цвет люминесценции) зависит от физико-химической структуры люминесцирующего вещества.
Первичная (собственная) люминесценция наблюдается без предварительного окрашивания объекта, вторичная (наведенная) возникает после окраски препаратов специальными люминесцирующими красителями — флюорохрома- м и. Люминесцентная микроскопия по сравнению с обычными методами обладает рядом преимуществ:'возможностью исследования живых микроорганизмов и обнаружения их в исследуемом материале в небольших концентрациях вследствие высокой степени контрастности.
В лабораторной практике люминесцентная микроскопия широко применяется для выявления и изучения многих микроорганизмов.
Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп
перемещения коллектора; 14 — рукоятка полевой диафрагмы; 15 — крышка гнезда светофильтров; 16 — винты пентрировки полевой диафрагмы; 17 — макрометрический винт; 18 — микрометрический винт; 19 - оправа коллектора; 20 — коробка с механизмами грубого и тонкого перемещения препарата; 21 — винт для крепления насадки; 22 — винты для центрировки полевой диафрагмы; 23 — бинокулярная насадка; 24 — рукоятка тормоза грубого движения; 25 — рукоятка переключения освещения; 26 — рукоятка для перемещения препарата в горизонтальной плоскости; 27 — защитная втулка; 28 ~ корпус ртутной лампы; 29 — кзовета с дистиллированной водой.
применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов (рис. 10). Световые лучи в таких микроскопах заменяют поток электронов, имеющий при определенных ускорениях длину волны около 0,005 нм, т. е. почти в 100000 раз короче длины волны видимого света. Высокая разрешающая способность электронного микро- скопа, практически составляющая 0,1-0,2 нм, позволяет получить общее полезное увеличение до 1000000 раз.
Наряду с приборами «просвечивающего» типа используют сканирующие электронные микроскопы, обеспечивающие рельефное изображение поверхности объекта. Разрешающая способность этих приборов значительно ниже, чем у электронных микроскопов «просвечивающего» типа.
Методы приготовления препаратов для темнопольной, фазово-контрастной и люминесцентной микроскопии. Для темнопольной и фазово-контрастной микроскопии готовят нативные препараты («раздавленная» капля и др.); микроскопируют с объективом 40 или специальным иммерсионным объективом с ирис-диафрагмой, позволяющей регулировать численную апертуру от 1,25 до 0,85. Толщина предметных стекол не должна превышать 1—1,5 мм, покровных —0,15—0,2 мм.
Для люминесцентной микроскопии готовят на предметных стеклах препараты-мазки или нативные препараты, которые окрашивают специальными флюоресцентными красителями: акридиновым желтым, акридиновым оранжевым, ауромином, корифосфином. При работе с иммерсионным объективом используют нефлюоресцирующее масло.
Приготовление препаратов для исследования в электронном микроскопе имеет ряд особенностей. Препараты готовят на специальных пленках-подложках, так как стекло непроницаемо для электронов. Исследуемый объект максимально очищают от посторонних примесей и наносят на пленку-подложку, предварительно помещенную на опорную металлическую сеточку.
5.2. Методы окраски мазков
Простой метод. Фиксированный мазок окрашивают каким-либо одним красителем, например фуксином водным (1—2 мин) или метиленовым синим (3—5 мин), промывают водой, высушивают и микроскопируют.
Сложные методы. Включают последовательное нанесение на препарат красителей, различающихся по химическому
составу и цвету, протрав и дифференцирующих веществ. Это позволяет выявить определенные структуры клеток и дифференцировать одни виды микроорганизмов от других. Окраска по методу Грама. 1. На фиксированный мазок наносят карболово-спиртовой раствор генцианового фиолетового через полоску фильтровальной бумаги. Через 1—2 мин ее снимают, а краситель сливают.
2. Наносят раствор Люголя на 1—2 мин.
3. Обесцвечивают препарат этиловым спиртом в течение 30—60 с до прекращения отхождения фиолетовых струек красителя.
4. Промывают препарат водой.
5. Докрашивают мазок водным раствором фуксина в течение 1—2 мин, промывают водой, высушивают и микроскопи- руют.
Грамположительные бактерии окрашиваются в темно-фиолетовый цвет, грамотрицательные — в красный (рис. 16).
Отношение бактерий к окраске по Граму определяется их способностью удерживать образовавшийся в процессе окраски комплекс генцианового фиолетового с йодом. Это зависит от различий в химическом составе и в проницаемости клеточной стенки грамположительных и грамотрицательных бактерий, а также от соотношения РНК и ДНК в их цитоплазме. В клеточной стенке грамположительных бактерий наиболее выражен муреиновый (мукопептидный слой), содержащий гликопептиды и тейхоевую кислоту. Пептидогликаны грамположительных бактерий структурно отличаются от грамотрицательных бактерий. Тейхоевые кислоты стабилизируют ионы магния на поверхности клеток. У грамположительных бактерий на поверхности клетки имеется комплекс протеин — рибонуклеат магния; соотношение РНК и ДНК в их цитоплазме составляет 8 :1; у грамотрицательных бактерий это соотношение равно 1 :1. Изозлектрическая точка цитоплазмы у грамположительных бактерий находится при pH 2,0—ЗА У грамотрицательных — около 5,0. После обработки раствором йода, являющегося окислителем, происходит сдвиг изоэлектрической точки в кислую сторону, выраженный у грамположительных бактерий в большей степени, чем у грамотрицательных.
Кроме того, проницаемость клеточной стенки у грамположительных бактерий меньше, чем у грамотрицательных. Таким образом, у грамположительных бактерий создаются оптимальные условия для прочной фиксации красителя и резистентности к обесцвечиванию спиртом.
Окраска по Граму имеет важное дифференциально-диагностическое значение и широко используется в микробиологии. К грамположительным бактериям относятся стафилококки, стрептококки, коринебактерии дифтерии, микобактерии туберкулеза и др., к грамотрицательным — гонококки, менингококки, кишечная палочка и др. Некоторые виды бактерий могут окрашиваться по Граму вариабельно в зависимости от возраста, особенностей культивирования и других факторов, изменяющих структуру клеточной стенки.
Основная ошибка, допускаемая при окраске по Г раму,состоит в переобесцвечивании или недообесцвечивании мазка спиртом. В первом случае грамположитеЛьные бактерии могут утрачивать первоначальную окраску генциановым фиолетовым и приобретать красный цвет (характерный для грамот- рицательных бактерий) в результате последующей докраски мазка фуксином. Во втором случае грамотрицательные бактерии могут сохранять сине-фиолетовый цвет генцианового фиолетового. Для правильной окраски следует строго соблюдать технику обесцвечивания (см. п. 3 описания окраски по Г раму).
Окраска кислотоустойчивых бактерий по методу Циля — Нельсена. 1. На фиксированный мазок наносят карболовый раствор фуксина через полоску фильтровальной бумаги и подогревают до появления паров в течение 3—5 мин.
2. Снимают бумагу, промывают мазок водой.
3. На мазок наносят 5% раствор серной кислоты или 3% раствор солянокислого спирта на 1—2 мин для обесцвечивания.
4. Промывают водой.
5. Докрашивают мазок водным раствором метиленового синего в течение 3—5 мин.
6. Промывают водой, высушивают и микроскопируют.
Кислотоустойчивость обусловлена наличием в клеточной
стенке и цитоплазме бактерий повышенного количества липидов, воска и оксикислот, в частности миколовой кислоты. Раствор карболовой кислоты разрыхляет клеточную стенку и тем самым повышает ее тинкториальные свойства, а высокая концентрация красителя и нагревание в процессе окраски усиливают реакцию взаимодействия красителя с бактериальными клетками, которые окрашиваются при этом в красный цвет. При обработке препарата серной кислотой некислотоустойчивые бактерии обесцвечиваются и окрашиваются метиленовым синим в голубой цвет, а кислотоустойчивые бактерии остаются окрашенными фуксином в красный цвет (рис. 17).
Окраска спор по методу Ожешки. 1. На нефиксированный мазок наносят 0,5% раствор хлористоводородной кислоты и подогревают на пламени горелки в течение 2—3 мин.
2. Кислоту сливают, препарат промывают водой, просушивают и фиксируют над пламенем горелки.
3. Окрашивают препарат по Цилю — Нельсену. Споры бактерий при этом приобретают красный цвет, а вегетативные формы—синий (рис. 18).
Окраска зерен волютина по методу Нейссера. 1. На фиксированный мазок наносят ацетат синьки Нейссера на 2—3 мин.
Наносят раствор Люголя на 10—30 с. Промывают препарат водой.
2. Мазок докрашивают водным раствором везувина или хризоидина в течение Я—1 мин.
3. Промывают водой, высушивают и микроскопируют.
Зерна волютина представляют собой соединения, имеющие
в отличие от цитоплазмы щелочную реакцию и поэтому избирательно воспринимают ацетат синьки, окрашиваясь в темно-синий цвет. Цитоплазма клетки, обладающая кислой реакцией, воспринимает щелочной краситель везувин и окрашивается в желтый цвет (рис. 19).
Обнаружение капсул по методу Бурри — Гинса. 1. Готовят препарат по Бурри: смешивают каплю взвеси микробов с каплей туши и при помощи стекла со шлифовальным краем готовят мазок так же, как мазки из крови; затем его высушивают и фиксируют.
2. На мазок наносят водный раствор фуксина на 1—2 мин.
Промывают водой, высушивают на воздухе и микроскопируют. При этом бактерии окрашиваются в красный цвет, а неокрашенные капсулы контрастно выделяются на чернорозовом фоне (рис. 20).
6. Принципы организации и оборудование бактериологической,
вирусологической и серологической лабораторий
Бактериологические, вирусологические и серологические лаборатории входят в состав санитарно-эпидемиологических станций (СЭС) и крупных больниц. В лабораториях СЭС выполняются бактериологические, вирусологические и серологические анализы материалов, полученных от больных и контактировавших с ними лиц, обследуются бактерионосители и проводятся санитарно-микробиологические исследования воды, воздуха, почвы, пищевых продуктов и различных предметов.
В бактериологических и серологических лабораториях больниц проводятся диагностические исследования при кишечных и гнойных инфекциях, дифтерии, туберкулезе и др., а также исследования по контролю за качеством дезинфекции и стерилизациа Диагностика особо опасных инфекций (чума, туляремия, бруцеллез и др.) осуществляется в специальных лабораториях, организация и деятельность которых строго регламентированы.
В вирусологических лабораториях проводится диагностика заболеваний, вызванных вирусами (грипп, полиомиелит и др.), хламидиями (орнитоз и др.) и риккетсиями (сыпной тиф, Ку-лихорадка и др.). При организации и оборудовании вирусологических лабораторий учитывается специфика работы с вирусами, клеточными культурами и куриными эмбрионами,
I ребующая строжайшей асептики.
Лаборатории обычно размещаются в нескольких помещениях, которые в зависимости от объема работы и целевого назначения занимают определенную площадь. В каждой лаборатории предусмотрены: а) боксы для работы с отдельными группами бактерий или вирусами; б) помещения для серологических исследований, приготовления питательных сред, стерилизации, мойки посуды; в) виварий с боксами для здоровых и подопытных животных;, г) регистратура для приема и выдачи анализов. Наряду с этими помещениями в вирусологических лабораториях имеются боксы для специальной обработки исследуемого материала и для работы с клеточными культурами.
Лаборатории снабжены следующим оборудованием: биологи- ' ческими иммерсионными микроскопами с дополнительными приспособлениями (осветитель, фазово-контрастное устройство, темнопольный конденсор и др.), люминесцентным микроскопом, термостатами, приборами для стерилизации (автоклав, сушильный шкаф, свертыватели), рН-мстрами, аппаратом для получения дистиллированной воды (дистиллятор), центрифугами, техническими, аналитическими весами, аппаратурой для фильтрования (фильтр Зейтца и др.), водяными банями, холодильниками, аппаратом для изготовления ватно-марлевых пробок, набором инструментов (бактериологические петли, шпатели, иглы, пинцеты и др.), лабораторной посудой (пробирки, колбы, чашки Петри, матрацы, флаконы, ампулы, пастеровские и градуированные пипетки) и др.
В лаборатории имеется место для окраски микроскопических препаратов, где находятся растворы красок, спирт, кислоты, фильтровальная бумага и пр. Каждое рабочее место снабжено газовой горелкой или спиртовкой и банкой с дезинфициру-ющим раствором. Для повседневной работы лаборатория должна располагать необходимыми питательными средами, химическими реактивами, диагностическими препаратами и другими лабораторными материалами. В крупных лабораториях имеются термальные комнаты для массового выращивания микроорганизмов, постановки серологических реакций.
Аппаратура для выращивания микроорганизмов, стерилизации и других микробиологических целей
1. Термостат. Аппарат, в котором поддерживается постоянная температура. Оптимальная температура для размножения многих микроорганизмов 37°С. Термостаты бывают суховоздушными и водяными (рис. 1). Используются для культивирования микроорганизмов.
2. Рве. 1. Термостат. 2. Микроан аэростат. Аппарат для вы
ращивания микроорганизмов в анаэробных условиях.
3.Сушильный шкаф (печь Пастера). Предназначен для стерилизации лабораторной посуды и других материалов.
4.Автоклав. Предназначен для стерилизации паром под давлением (рис. 2, а, б). В микробиологических лабораториях используются автоклавы разных моделей (вертикальные, горизонтальные, стационарные, переносные).
5.Холодильники. Используются в микробиологических лабораториях для хранения культур микроорганизмов, питательных сред, кроЬи, вакцин, сывороток и прочих биологически активных препаратов при температуре около 4°С. Для сохранения биопрепаратов при температуре ниже 0°С используются низкотемпературные холодильники, в которых поддерживается температура - 20°С и ниже.
6.Центрифуги. Применяются для осаждения микроорганизмов, эритроцитов и других клеток для разделения неоднородных жидкостей (эмульсии, суспензии). В лабораториях используют центрифуги, работающие на разных скоростях.
7. Прибор для счета колоний (рис. 3). Полуавтоматическийсчетчик, снабженный иглой с пружинным устройством. Легкий нажим иглы на участке дна чашки Петри, соответствующей положению колонии, оставляет на стекле метку. При этом держатель поднимается вверх, цепь замыкается и показания счетчика увеличиваются на единицу.
7. Выделение чистых культур бактерий
Объекты окружающей среды, включая и материал от больного (гной, мокрота, фекалии и др.), обычно содержат смесь различных микробов. С целью их обнаружения и определения видовой принадлежности (идентификация) применяют бактериологическое исследование (бактериологический метод), которое заключается в посеве проб исследуемого материала на питательные среды для получения (выделения) чистой культуры.
Для выделения чистой культуры, которое производят поэтапно в течение нескольких дней, в начале его используют механическое разобщение бактерий на плотных питательных средах (посев штрихом, шпателем на несколько чашек Петри и др.). На следующий день получают отдельные изолированные колонии. Колония — скопление бактерий, ведущее начало от одной клетки, а поэтому представляющее собой чистую культуру.
После описания культуральных свойств различных типов колоний (размер, цвет, форма, края и др.), выросших на чашке с плотной питательной средой, делают пересев из каждого типа колоний на скошенный агар для накопления чистой культуры. Выросшую на 3-й день чистую культуру (после проверки ее чистоты путем микроскопирования) начинают идентифицировать по различным свойствам — морфологическим, тинктори- альным, ферментативным, антигенным и др.
Существуют способы выделения чистых культур, основанные на обработке исследуемого материала с помощью физических или химических факторов, обладающих избирательным действием на определенные бактерии. Для выделения чистых культур используют также способность некоторых бактерий быстро размножаться в организме восприимчивых к ним лабораторных животных.
При выделении чистых культур анаэробов посевы исследуемого материала производят в анаэробных условиях на специальные среды с пониженным редокс-потенциалом, а также используют специальные аппараты (например, анаэростаты), исключающие доступ свободного кислорода к растущей культуре.